Search

found 96 results

Images, Canterbury Museum

One landscape colour digital photograph taken on 19 November 2011 showing the temporary premises of Lyttelton Sea Foods in a relocatable building on Norwich Quay. The building is located on the site of the Lyttelton Hotel. Also visible in the photograph are (left to right) the side of Shadbolt House, the rear of the Pacifica Building which was t...

Images, UC QuakeStudies

Damage to the Lyttelton Hotel on Norwich Quay. The top of the building has crumbled, bringing the roof down with it. Bricks have fallen on the awning and all along the footpath. Wire fencing and road cones have been used to create a cordon around the building.

Videos, UC QuakeStudies

A video of a tour of Gloucester Street from Dallington to Rolleston Avenue, a five kilometre journey which can be seen as a cross-section of the Canterbury rebuild. The video includes footage of the site of the demolished St George's Presbyterian Church in Linwood, New Regent Street, the Rendezvous Hotel, the Isaac Theatre Royal, the Press building, the Christchurch Art Gallery, and Christ's College.

Images, UC QuakeStudies

View down Victoria Street with the Casino on the right having some construction working being done, and the deconsruction of the Crowne Plaza Hotel at the end of the street. Flags in Canterbury colours, red and black can be seen on the street lights.

Images, UC QuakeStudies

The deconstruction of the Crowne Plaza Hotel, with a digger and a pile of demolition rubble in front. Road cones and signs have been placed in front to divert traffic around the area. Flags in Canterbury colours, red and black can be seen on the street lights.

Images, UC QuakeStudies

The deconstruction of the Crowne Plaza Hotel, with a digger and a pile of demolition rubble in front. Road cones and signs have been placed in front to divert traffic around the area. A flag in Canterbury colours, red and black can be seen on the street lights.

Images, eqnz.chch.2010

Much of the CBD is still cordoned off and without power (as you should be able to spot) as a result of the damage caused by February's deadly earthquake. This photo clearly shows the extent of the lean that the Hotel Grand Chancellor is now on. Apparently it is out by 1m at the top leaning east. Demolition will start about mid June and is expec...

Images, eqnz.chch.2010

Damage to the Hotel Grand Chancellor can be seen in the middle. At the bottom left is the lift shaft (now fully demolished) of the CTV building which claimed over 100 lives when it collapsed in the earthquake. Taken during a scenic flight over Christchurch, New Zealand, 3 months after the deadly earthquake of 22 February, 2011. Much of the inn...

Images, eqnz.chch.2010

Another city walk around, this time with my brother-in-law from Auckland. Also went to the Quake City exhibition in the city organised by the Canterbury Museum. First fine day for a while. This bus is used as a chocolate restaurant, and is parked next to the Pallet Pavilion on the site of the old Park Royal Hotel.

Images, Alexander Turnbull Library

Passengers use the baggage carousel at the Christchurch Airport to sleep on as they are swept around. 'Such a unique concept... a revolving motel!' Shortage of accommodation in Christchurch, because of earthquake-damaged hotels and motels and workers coming in for the Rebuild, was a serious problem for travellers to Christchurch, leading many to sleep in the airport overnight. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.