Search

found 167 results

Research papers, The University of Auckland Library

The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic response in as-built environment, which includes all the real physical properties of a structure under study and its surroundings. The recorded responses can be used for better understanding of behavior of structures by extracting their dynamic characteristics. It is significantly valuable to examine the behavior of buildings under different excitation scenarios. The trends in dynamic characteristics, such as modal frequencies and damping ratios, thus developed can provide quantitative data for the variations in the behavior of buildings. Moreover, such studies provide invaluable information for the development and calibration of realistic models for the prediction of seismic response of structures in model updating and structural health monitoring studies. This thesis comprises two parts. The first part presents an evaluation of seismic responses of two instrumented three storey RC buildings under a selection of 50 earthquakes and behavioral changes after Ms=7.1 Darfield (2010) and Ms=6.3 Christchurch (2011) earthquakes for an instrumented eight story RC building. The dynamic characteristics of the instrumented buildings were identified using state-of-the-art N4SID system identification technique. Seismic response trends were developed for the three storey instrumented buildings in light of the identified frequencies and the peak response accelerations (PRA). Frequencies were observed to decrease with excitation level while no trends are discernible for the damping ratios. Soil-structure interaction (SSI) effects were also determined to ascertain their contribution in the seismic response. For the eight storey building, it was found through system identification that strong nonlinearities in the structural response occurred and manifested themselves in all identified natural frequencies of the building that exhibited a marked decrease during the strong motion duration compared to the pre-Darfield earthquakes. Evidence of foundation rocking was also found that led to a slight decrease in the identified modal frequencies. Permanent stiffness loss was also observed after the strong motion events. The second part constitutes developing and calibrating finite element model (FEM) of the instrumented three storey RC building with a shear core. A three dimensional FEM of the building is developed in stages to analyze the effect of structural, non-structural components (NSCs) and SSI on the building dynamics. Further to accurately replicate the response of the building following the response trends developed in the first part of the thesis, sensitivity based model updating technique was applied. The FEMs were calibrated by tuning the updating parameters which are stiffnesses of concrete, NSCs and soil. The updating parameters were found to generally follow decreasing trends with the excitation level. Finally, the updated FEM was used in time history analyses to assess the building seismic performance at the serviceability limit state shaking. Overall, this research will contribute towards better understanding and prediction of the behavior of structures subjected to ground motion.

Research papers, The University of Auckland Library

Though generally considered “natural” disasters, cyclones and earthquakes are increasingly being associated with human activities, incubated through urban settlement patterns and the long-term redistribution of natural resources. As society is becoming more urbanized, the risk of human exposure to disasters is also rising. Architecture often reflects the state of society’s health: architectural damage is the first visible sign of emergency, and reconstruction is the final response in the process of recovery. An empirical assessment of architectural projects in post-disaster situations can lead to a deeper understanding of urban societies as they try to rebuild. This thesis offers an alternative perspective on urban disasters by looking at the actions and attitudes of disaster professionals through the lens of architecture, situated in recent events: the 2010 Christchurch earthquake, the 2010 Haiti earthquake, and the 2005 Hurricane Katrina. An empirical, multi-hazard, cross-sectional case study methodology was used, employing grounded theory method to build theory, and a critical constructivist strategy to inform the analysis. By taking an interdisciplinary approach to understanding disasters, this thesis positions architecture as a conduit between two divergent approaches to disaster research: the hazards approach, which studies the disaster cycles from a scientific perspective; and the sociological approach, which studies the socially constructed vulnerabilities that result from disasters, and the elements of social change that accompany such events. Few studies to date have attempted to integrate the multi-disciplinary perspectives that can advance our understanding of societal problems in urban disasters. To bridge this gap, this thesis develops what will be referred to as the “Rittelian framework”—based on the work of UC Berkeley’s architecture professor Horst Rittel (1930-1990). The Rittelian framework uses the language of design to transcend the multiple fields of human endeavor to address the “design problems” in disaster research. The processes by which societal problems are addressed following an urban disaster involve input by professionals from multiple fields—including economics, sociology, medicine, and engineering—but the contribution from architecture has been minimal to date. The main impetus for my doctoral thesis has been the assertion that most of the decisions related to reconstruction are made in the early emergency recovery stages where architects are not involved, but architects’ early contribution is vital to the long-term reconstruction of cities. This precipitated in the critical question: “How does the Rittelian framework contribute to the critical design decisions in modern urban disasters?” Comparative research was undertaken in three case studies of recent disasters in New Orleans (2005), Haiti (2010) and Christchurch (2010), by interviewing 51 individuals who were selected on the basis of employing the Rittelian framework in their humanitarian practice. Contextualizing natural disaster research within the robust methodological framework of architecture and the analytical processes of sociology is the basis for evaluating the research proposition that architectural problem solving is of value in addressing the ‘Wicked Problems’ of disasters. This thesis has found that (1) the nuances of the way disaster agents interpret the notion of “building back better” can influence the extent to which architectural professionals contribute in urban disaster recovery, (2) architectural design can be used to facilitate but also impede critical design decisions, and (3) framing disaster research in terms of design decisions can lead to innovation where least expected. This empirical research demonstrates how the Rittelian framework can inform a wider discussion about post-disaster human settlements, and improve our resilience through disaster research.

Research papers, The University of Auckland Library

A non-destructive hardness testing method has been developed to investigate the amount of plastic strain demand in steel elements subjected to cyclic loading. The focus of this research is on application to the active links of eccentrically braced frames (EBFs), which are a commonly used seismic-resisting system in modern steel framed buildings. The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems fully into their inelastic state, generating a moderate to high level of plastic strain in EBF active links, for a range of buildings from 3 to 23 storeys in height. This raised two important questions: 1) what was the extent of plastic deformation in active links; and 2) what effect does that have to post-earthquake steel properties? This project comprised determining a robust relationship between hardness and plastic strain in order to be able to answer the first question and provide the necessary input into answering the second question. A non-destructive Leeb (portable) hardness tester (model TH170) has been used to measure the hardness, in order to determine the plastic strain, in hot rolled steel universal sections and steel plates. A bench top Rockwell B was used to compare and validated the hardness measured by the portable hardness tester. Hardness was measured from monotonically strained tensile test specimens to identify the relationship between hardness and plastic strain demand. Test results confirmed a good relationship between hardness and the amount of monotonically induced plastic strain. Surface roughness was identified as an important parameter in obtaining reliable hardness readings from a portable hardness reader. A proper surface preparation method was established by using three different cleaning methods, finished with hand sanding to achieve surface roughness coefficients sufficiently low not to distort the results. This work showed that a test surface roughness (Ra) is not more than 1.6 micron meter (μm) is required for accurate readings from the TH170 tester. A case study on an earthquake affected building was carried out to identify the relationship between hardness and amount of plastic strain demand in cyclically deformed active links. Hardness was carried out from active links shown visually to have been the most affected during one of the major earthquake events. Onsite hardness test results were then compared with laboratory hardness test results. A good relationship between hardness from onsite and laboratory was observed between the test methods; Rockwell B bench top and portable Leeb tester TH170. Manufacturing induced plastic strain in the top and bottom of the webs of hot rolled sections were discovered from this research, an important result which explains why visual effects of earthquake induced active link yielding (eg cracked or flaking paint) was typically more prevalent over the middle half depth of the active link. The extent of this was quantified. It was also evident that the hardness readings from the portable hardness tester are influenced by geometry, mass effects and rigidity of the links. The final experimental stage was application of the method to full scale cyclic inelastic tested nominally identical active links subjected to loading regimes comprising constant and variable plastic strain demands. The links were cyclically loaded to achieve different plastic strain level. A novel Digital Image Correlation (DIC) technique was incorporated during the tests of this scale, to confirm the level of plastic strain achieved. Tensile test specimens were water jet cut from cyclically deformed webs to analyse the level of plastic strain. Test results show clear evidence that cyclically deformed structural steel elements show good correlation between hardness and the amount of plastic strain demand. DIC method was found to be reliable and accurate to check the level of plastic strain within cyclically deformed structural steel elements.

Videos, UC QuakeStudies

A video clip of a large-scale, temporary installation titled Upload. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Videos, UC QuakeStudies

A video clip of a large-scale, temporary installation titled Equilibrium. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Videos, UC QuakeStudies

A video clip of a large-scale, temporary installation titled Equilibrium. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Videos, UC QuakeStudies

A video clip depicting part of a large-scale, temporary installation titled Antigravity. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Images, UC QuakeStudies

A photograph of a temporary installation titled Antigravity, which was created by students from the University of Auckland, in partnership with Cakes by Anna. Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Images, UC QuakeStudies

A photograph of a temporary, inflatable structure, titled Upload, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Upload was created by students from the University of Auckland, in partnership with Chirney Coffee.

Images, UC QuakeStudies

A photograph of a temporary, inflatable structure titled Upload, which was created by students from the University of Auckland, in partnership with Chirney Coffee. Upload was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Images, UC QuakeStudies

A photograph of a temporary, inflatable structure, titled Upload, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Upload was created by students from the University of Auckland, in partnership with Chirney Coffee.

Images, UC QuakeStudies

A photograph of a temporary installation titled Antigravity, which was created by students from the University of Auckland, in partnership with Cakes by Anna. Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Images, UC QuakeStudies

A photograph of a temporary installation titled Antigravity, which was created by students from the University of Auckland, in partnership with Cakes by Anna. Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Images, UC QuakeStudies

A photograph of a temporary installation titled Orbis, which was created by students from the University of Auckland, in partnership with Twisted Hop. Orbis was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Images, UC QuakeStudies

A photograph of a temporary, inflatable structure, titled Upload, which was created by students from the University of Auckland, in partnership with Chirney Coffee. Upload was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Videos, UC QuakeStudies

A video clip of two large-scale, temporary installations titled Upload (left) and Equilibrium (right). The installations were created by students from The University of Auckland, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.

Videos, UC QuakeStudies

A video clip of people dancing inside a large-scale, temporary installation titled Equilibrium. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.