Search

found 204 results

Videos, eqnz.chch.2010

At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.

Images, eqnz.chch.2010

Tension cracks at least 300 mm deep, on the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Research papers, The University of Auckland Library

Following the 22 February 2011 Christchurch earthquake a comprehensive damage survey of the unreinforced masonry (URM) building stock of Christchurch city, New Zealand was undertaken. Because of the large number of aftershocks associated with both the 2011 Christchurch earthquake and the earlier 4 September 2010 Darfield earthquake, and the close proximity of their epicentres to Christchurch city, this earthquake sequence presented a unique opportunity to assess the performance of URM buildings and the various strengthening methods used in New Zealand to increase the performance of these buildings in earthquakes. Because of the extent of data that was collected, a decision was made to initially focus exclusively on the earthquake performance of URM buildings located in the central business district (CBD) of Christchurch city. The main objectives of the data collection exercise were to document building characteristics and any seismic strengthening methods encountered, and correlate these attributes with observed earthquake damage. In total 370 URM buildings in the CBD were surveyed. Of the surveyed buildings, 62% of all URM buildings had received some form of earthquake strengthening and there was clear evidence that installed earthquake strengthening techniques in general had led to reduced damage levels. The procedure used to collect and process information associated with earthquake damage, general analysis and interpretation of the available survey data for the 370 URM buildings, the performance of earthquake strengthening techniques, and the influence of earthquake strengthening levels on observed damage are reported within. http://15ibmac.com/home/

Images, eqnz.chch.2010

Looking across the faultline where the Saturday 4 September 2010 magnitude 7.1 earthquake originated. Note how much the previously straight fence is now out of alignment.

Images, eqnz.chch.2010

Looking across the faultline where the Saturday 4 September 2010 magnitude 7.1 earthquake originated. Note how much the previously straight fence is now out of alignment.

Research papers, The University of Auckland Library

The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.

Research papers, The University of Auckland Library

The M7.1 Darfield earthquake shook the town of Christchurch (New Zealand) in the early morning on Saturday 4th September 2010 and caused damage to a number of heritage unreinforced masonry buildings. No fatalities were reported directly linked to the earthquake, but the damage to important heritage buildings was the most extensive to have occurred since the 1931 Hawke‟s Bay earthquake. In general, the nature of damage was consistent with observations previously made on the seismic performance of unreinforced masonry buildings in large earthquakes, with aspects such as toppled chimneys and parapets, failure of gables and poorly secured face-loaded walls, and in-plane damage to masonry frames all being extensively documented. This report on the performance of the unreinforced masonry buildings in the 2010 Darfield earthquake provides details on typical building characteristics, a review of damage statistics obtained by interrogating the building assessment database that was compiled in association with post-earthquake building inspections, and a review of the characteristic failure modes that were observed.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown Greendale Faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

The faultline cuts across Telegraph Road, leaving a kink in its originally straight alignment; aftermath of the magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

The faultline cuts across Telegraph Road, leaving a kink in its originally straight alignment; aftermath of the magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

The faultline cuts across Telegraph Road, leaving a kink in its originally straight alignment; aftermath of the magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

The faultline cuts across Telegraph Road, leaving a kink in its originally straight alignment; aftermath of the magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

This originally straight farm fence has been laterally displaced at least 3 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.