Search

found 866 results

Research papers, University of Canterbury Library

This paper describes the performance of (or damage to) ceilings in buildings during the 22nd February 2011 Christchurch earthquake and the subsequent aftershocks. In buildings that suffered severe structural damage, ceilings and other non-structural components (rather expectedly) failed, but even in buildings with little damage to their structural systems, ceilings were found to be severely damaged. The extent of ceiling damage, where the ceilings were subject to severe shaking, depended on the type of the ceiling system, the size and weight of the ceilings and the interaction of ceilings with other elements. The varieties and extent of observed ceiling damage are discussed in this paper with the help of photographs taken after the earthquake.

Images, eqnz.chch.2010

A view after the 6.3 magnatude quake hit Christchurch 22 February 2011. As time drifts by, more quickly now it seems! Somewhere inside of me youth still lingers, I’m still chasing dreams and butterflies And gazing at rainbows in wonder! For I believe youth never fades In the eyes of those who can see From the inside out! From a poem by Annab...

Images, Alexander Turnbull Library

A couple sits in a Travel Agency discussing places to go for a holiday. The travel agent says 'Worried about holidaying in New Zealand - well how about...' and she turns to the display of countries to visit on the wall behind her. Each of the countries is illustrated with a very negative image; e.g. 'Japan' with a nuclear symbol, 'Thailand' with a pile of human ashes, 'Sth Africa' with two arms raised in desperate supplication... Context - The couple do not want to visit New Zealand because of the Canterbury earthquakes and there seem to be an awful lot of natural disasters or wars or high expense etc. recently. Colour and black and white versions available Quantity: 2 digital cartoon(s).

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research Papers, Lincoln University

Today there is interest in building resilient communities. Identifying and managing the risks of natural hazards with communities who face compounding hazards is challenging. Alpine ski areas provide a unique context to study this challenging and complex process. The traditional approach taken to manage natural hazards is discipline-centric and focuses on common (e.g. high probability low consequence) natural hazards such as avalanches. While this thesis acknowledges that the common approach is rational, it argues that we can extend our communities of practice to include rare (e.g. low probability / high consequence) natural hazards such as earthquakes. The dynamically complex nature of these ‘rare’ hazards limits our understanding about them, but by seeking and using the lived experiences of people in mountain communities some knowledge can be gained to help improve our understanding of how to adapt. This study focuses on such an approach in the context of alpine ski areas prone to earthquakes as a first step toward identifying key policy opportunities for hazard mitigation in general. The contributions can be broken down into methodological, contextual, and theoretical pursuits, as well as opportunities for improving future research. A development mixed method triangulated approach was justified because the research problem (i.e. earthquakes in ski areas) has had little consideration. The context provided the opportunity to test the integration of methods while dealing with the challenges of research in a novel context. Advancement to fuzzy cognitive mapping was achieved through the use of unsupervised neural networks (Self-organizing Maps or Kohonen Maps). The framework applied in the multi-site case study required a synthesis of current approaches, advances to methods and a functional use of cultural theory. Different approaches to participatory policy development were reviewed to develop a research protocol that was accessible. Cultural theory was selected as a foundation for the thesis because of its’ preference for plural rationalities from five ways of organizing. Moreover, the study undertook a shift away from the dichotomy of ‘methodological individualism’ and ‘methodological collectivism’ and instead chose the dividual (i.e. social solidarities that consist of culural biases, behavioral strategies and social relations) as a consistent unit of analysis despite three different methodologies including: field studies, qualitative interviews, and fuzzy cognitive maps. In this sense, the thesis sought to move away from ‘elegant solutions’ from singular solidarities or methods toward a research philosophy that sustains requisite variety and clumsy solutions. Overall the approach was a trandisciplinary framework that is a step toward sustainable hazards mitigation. The results indicate that the selections of risks and adaptation strategies associated with the in-situ hazards are driven by roles that managers, workers, and riders play in the context. Additionally, fuzzy cognitive maps were used as an extension of qualitative interviews and demonstrated the potential for power struggles that may arise between participant groups when considering strategies for preparation, response and recovery. Moreover, the results stress that prolonged engagement with stakeholders is necessary to improve the policy development process. Some comments are made on the compatibility condition of congruence between cultural biases, behavioural strategies, and social relations. As well, inclusion of the hermit/autonomous solidarities is stressed as a necessary component of future applications of cultural theory. The transdisciplinary mixed-method framework is an approach that can be transferred to many other vital areas of research where integration is desirable.

Research Papers, Lincoln University

The aftermath of three earthquakes has forced Christchurch to re-plan and rebuild. New perspectives of a sustainable city have arisen granting Christchurch the chance of becoming an example to the world. This work is centred on bioclimatic landscape design as a base for greening strategies. It deals with strategic landscape design adapted to a specific climate, from a user’s perspective. The investigation will be applied to Christchurch’s urban centres, assessing cultural adaptability to the local climate and implications for landscape design. Climatic data shows that humidity is not a local problem. However, the wind is the determinant. In Christchurch the solar radiation and the prevailing winds are the most important microclimatic variables, the latter intensifying the loss of surface heat, decreasing the radiant temperature and affecting thermal sensation. The research objective is to explore design parameters at the street-scale and identify ways to maximise thermal comfort in outdoor spaces through design-based strategies. The investigation will apply methods of participant observation, depth interviews, climatic data collection and design experimentation based on thermal comfort models and computer simulation tools. Case study sites chosen for investigation are places with current levels of activity that may be anticipated in the rebuild of the central city. The research will have two main outcomes: improved understanding of local urban culture adaptation to microclimate, and a demonstration of how design can enhance adaption. These outcomes will inform designers and city managers about good design practices and strategies that can be used to ensure a long term liveable city.

Research papers, The University of Auckland Library

As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/

Research papers, University of Canterbury Library

This paper provides a photographic tour of the ground-surface rupture features of the Greendale Fault, formed during the 4th September 2010 Darfield Earthquake. The fault, previously unknown, produced at least 29.5 km of strike-slip surface deformation of right-lateral (dextral) sense. Deformation, spread over a zone between 30 and 300 m wide, consisted mostly of horizontal flexure with subsidiary discrete shears, the latter only prominent where overall displacement across the zone exceeded about 1.5 m. A remarkable feature of this event was its location in an intensively farmed landscape, where a multitude of straight markers, such as fences, roads and ditches, allowed precise measurements of offsets, and permitted well-defined limits to be placed on the length and widths of the surface rupture deformation.