A close-up photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.
A digger demolishes Henry Africa's restaurant. The photographer comments, "A building housing a restaurant and a great little neighbourhood bar is finally coming down because of earthquake damage. The left half. Janes Bar and one of the upstairs flats were still standing today, but they'll be gone soon".
An entry from Deb Robertson's blog for 19 November 2012 entitled, "Christchurch: Trying to make sense of living here....".
An entry from Deb Robertson's blog for 17 July 2013 entitled, "ps, I love you too".
The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.
The standard way in which disaster damages are measured involves examining separately the number of fatalities, of injuries, of people otherwise affected, and the financial damage that natural disasters cause. Here, we implement a novel way to aggregate these separate measures of disaster impact and apply it to two catastrophic events from 2011: the Christchurch (New Zealand) earthquakes and the Greater Bangkok (Thailand) flood. This new measure, which is similar to the World Health Organization's calculation of Disability Adjusted Life Years (DALYs) lost due to the burden of diseases and injuries, is described in detail in Noy [7]. It allows us to conclude that New Zealand lost 180 thousand lifeyears as a result of the 2011 events, and Thailand lost 2644 thousand lifeyears. In per capita terms, the loss is similar, with both countries losing about 15 days per person due to the 2011 catastrophic events in these two countries. © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
The lived reality of the 2010-2011 Canterbury earthquakes and its implications for the Waimakariri District, a small but rapidly growing district (third tier of government in New Zealand) north of Christchurch, can illustrate how community well-being, community resilience, and community capitals interrelate in practice generating paradoxical results out of what can otherwise be conceived as a textbook ‘best practice’ case of earthquake recovery. The Waimakariri District Council’s integrated community based recovery framework designed and implemented post-earthquakes in the District was built upon strong political, social, and moral capital elements such as: inter-institutional integration and communication, participation, local knowledge, and social justice. This approach enabled very positive community outputs such as artistic community interventions of the urban environment and communal food forests amongst others. Yet, interests responding to broader economic and political processes (continuous central government interventions, insurance and reinsurance processes, changing socio-cultural patterns) produced a significant loss of community capitals (E.g.: social fragmentation, participation exhaustion, economic leakage, etc.) which simultaneously, despite local Council and community efforts, hindered community well-being in the long term. The story of the Waimakariri District helps understand how resilience governance operates in practice where multi-scalar, non-linear, paradoxical, dynamic, and uncertain outcomes appear to be the norm that underpins the construction of equitable, transformative, and sustainable pathways towards the future.
Creativity that is driven by a need for physical or economic survival, which disasters are likely to inspire, raises the question of whether such creativity fits with conventional theories and perspectives of creativity. In this paper we use the opportunity afforded by the 2010-2013 Christchurch, New Zealand earthquakes to follow and assess the creative practices and responses of a number of groups and individuals. We use in-depth interviews to tease out motivations and read these against a range of theoretical propositions about creativity. In particular, we focus on the construct of “elite panic” and the degree to which this appeared to be evident in the Christchurch earthquakes context. Bureaucratic attempts to control or limit creativity were present but they did not produce a completely blanket dampening effect. Certain individuals and groups seemed to be pre-equipped to navigate or ignore potential blocks to creativity. We argue, using Geir Kaufmann’s novelty-creativity matrix and aspects of Teresa Amabile’s and Michael G. Pratt’s revised componential theory of creativity that a special form of disaster creativity does exist.
A photograph of a projector set up in the Avonhead Baptist Church. The room is to be used as a temporary lecture theatre for the Department of Civil and Natural Resources Engineering, as lecture theatres on campus are inaccessible following the 22 February 2011 earthquake.
The Cathedral of the Blessed Sacrament on Barbadoes Street, severely damaged after the 22 February 2011 earthquake. The domes on either side of the Cathedral have collapsed and are lying in the area in front. To the right, a crushed car can just be seen.
The Cathedral of the Blessed Sacrament on Barbadoes Street, severely damaged after the 22 February 2011 earthquake. The domes on either side of the Cathedral have collapsed and are lying in the area in front. To the right, a crushed car can just be seen.
A copy of a letter from Empowered Christchurch which was sent to Gerry Brownlee, Minsiter for the Canterbury Earthquake Recovery, on 15 April 2014. The letter lodges an Official Information Act request about the remediation of land that is subject to liquefaction and flooding.
Civil Defence staff conferring at their headquarters in the Christchurch Art Gallery during the immediate aftermath of the 22 February earthquake. On the back wall maps of the city on which areas of importance have been marked with stickers and marker pens can be seen.
A photograph of a fence on the Greendale Fault line which has been damaged by the 4 September 2010 earthquake. The wire has been pulled off the posts and is hanging loose. The ground has also shifted so the fence is no longer straight.
A photograph of a fence on the Greendale Fault line which has been damaged by the 4 September 2010 earthquake. The wire has been pulled off the posts and is hanging loose. The ground has also shifted so the fence is no longer straight.
A photograph of the earthquake damage to The Press building in Cathedral Square. The top storey of the building has collapsed into the storey below, some of the masonry falling onto the pavement below. Wire fencing has been placed around the building as a cordon.
Al Dwyer, leader of the USAID Disaster Assistance Response Team (DART), outside the US headquarters in Latimer Square. Members of DART can be seen behind him. Latimer Square was set up as a temporary headquarters for emergency management personnel after the 22 February 2011 earthquake.
Prime Minister John Key talking to Al Dwyer, and members of the USAID Disaster Assistance Response Team (DART) outside the US headquarters in Latimer Square. John Key is visiting to thank DART for their efforts in the aftermath of the 22 February 2011 earthquake.
A collapsed section of the Cranmer Courts on the corner of Montreal Street and Kilmore Street. Safety fences have been erected around the building to prevent the public getting close enough to it to be endangered by falling masonry in the event of another earthquake.
Extensive damage caused by liquefaction in Bracken Street, Avonside. A pile of liquefaction can be seen in front of this house. After the earthquake, many people had to dig this silt out of their properties and place it on the road to be collected.
A photograph of the largest section of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.
An image from a Army News March 2011 article titled, "Sappers Show Their Expertise in a City Under Siege". The image shows New Zealand Army engineers working at New Brighton beach to provide desalinated water for residents affected by the 22 February 2011 earthquake.
An image from a Army News March 2011 article titled, "Sappers Show Their Expertise in a City Under Siege". The image shows New Zealand Army engineers working at New Brighton beach to provide desalinated water for residents affected by the 22 February 2011 earthquake.
An image from a Army News March 2011 article titled, "Sappers Show Their Expertise in a City Under Siege". The image shows New Zealand Army engineers working at New Brighton beach to provide desalinated water for residents affected by the 22 February 2011 earthquake.
A member of the New Zealand Police photographed with Don Mahlke, a fire fighter from the Los Angeles County Fire Department in the United States. Mahlke travelled to New Zealand to help out with the search and rescue response to the 22 February 2011 earthquake.
A member of the New Zealand Police photographed with a member of the Los Angeles County Fire Department. Personnel from the Los Angeles County Fire Department travelled to New Zealand to help out with the search and rescue response to the 22 February 2011 earthquake.
A PDF copy of a proposal prepared by Anglican Advocacy (formerly the Anglican Life Social Justice Unit) and Te Whare Roimata to MBIE and CERA in 2012. The report outlines how social housing could look in Christchurch's Inner City East following the Christchurch earthquakes.
A photograph of volunteers from the Wellington Emergency Management Office being photographed in front of a truck. The volunteers are preparing to travel to Christchurch to help out after the 22 February 2011 earthquake. In the background is the Wellington Emergency Management Office building.
A photograph of the earthquake damage to a block of shops along Ferry Road. The top of the brick walls have crumbled. The fallen bricks have been cleared from the footpath below. Wire fencing, road cones and police tape have been used as a cordon.
A photograph of members of the Wellington Emergency Management Office at a graduation ceremony in the Wellington Town Hall. The volunteers were awarded certificates of appreciation at the ceremony, for their work in the emergency response to the 22 February 2011 earthquake in Christchurch.