Search

found 1001 results

Audio, Radio New Zealand

There are hopes an earthquake simulation in Porirua might result in homes being better prepared for a big shake. Houses on Christchurch's Port Hills suffered more damage than houses in other areas during the Canterbury Earthquakes - even though the ground shaking was roughly the same. Now the Earthquake Commission is on a mission to find out why that was - and prevent the same level of damage in a future quake. Checkpoint reporter Logan Church and video journalist Dom Thomas start their report up on a hilly farm above Wellington.

Images, UC QuakeStudies

A box containing drilling cores from soil sampling. The photographer comments, "These are the samples from drilling near my home. As you can see they are not so much samples as sand piles. The drill in a nearby street went down 20m and it was sand all the way. This is the box of samples from the ground level to 4.6m deep".

Images, UC QuakeStudies

Director of Gap Filler, Coralie Winn, setting up a sign in front of 832 Colombo Street. The sign reads, "Welcome! This site was home to South of the Border (Mexican Restaurant) and Denis Moore, Auto Electrician. Please keep your shoes on! Please be aware that the ground is uneven. Local by-laws applies - no alcohol on the street. For safety, we cannot over-crowd the site. ROAR. Please do buy a coffee, a cake and bring a picnic to enjoy. Thanks. Gap Filler".

Images, UC QuakeStudies

A two-storey house in Avonside Drive with a warped upper balcony. The photographer comments, "This house is on Avonside Drive opposite the Avon River. The land in this area spread laterally and had bad liquefaction of the soil. This caused some houses to sink into the ground, but as the balcony supports did not sink as much the balcony came to rest at a crazy angle".

Images, UC QuakeStudies

A photograph of the earthquake damage to Café Valentino on Colombo Street. The façade of the closest section of the building has collapsed and the bricks have spilled onto the awning below. The same section of the awning has broken under the weight of the bricks and is resting against the ground. Bricks and other rubble cover the other sections of the awning and have spilled onto the footpath and street in the distance.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. (L to R on ground): Archdeacon Andrew Starky; Vicar Indrea Alexander and Concillor Ray Bennett watch as Craig Perkins and Kevin Deam are hoisted by crane to remove damaged spires from the church tower. (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins inspect a damaged spire on the church tower".

Images, UC QuakeStudies

A wooden house in Wainoni has visibly bowed inwards towards its centre. The photographer comments, "During the numerous earthquakes in Christchurch the land which ran alongside the Avon river on Avonside Drive slumped towards the waterway. In a line parallel to the road the road, but around 20m away a ground movement occurred which caused some houses to rise up or sink down".

Audio, Radio New Zealand

The public policy think tank, the New Zealand Initiative, says this country is still under-prepared for the next big earthquake. The group of economists has reviewed the policy response to the Canterbury earthquakes and has just released its report: Recipe for disaster: Building policy on shaky ground. It says recovery from the quakes was hindered by avoidable policy mistakes that still haven't been addressed. One of the report's co authors Dr Eric Crampton joins Susie Ferguson to discuss the issues.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 caused widespread liquefaction in many parts of Christchurch. Observations from the CES highlight some sites were liquefaction was predicted by the simplified method but did not manifest. There are a number of reasons why the simplified method may over-predict liquefaction, one of these is the dynamic interaction between soil layers within a stratified deposit. Soil layer interaction occurs through two key mechanisms; modification of the ground motion due to seismic waves passing through deep liquefied layers, and the effect of pore water seepage from an area of high excess pore water pressure to the surrounding soil. In this way, soil layer interaction can significantly alter the liquefaction behaviour and surface manifestation of soils subject to seismic loading. This research aimed to develop an understanding of how soil layer interaction, in particular ground motion modification, affects the development of excess pore water pressures and liquefaction manifestation in a soil deposit subject to seismic loading. A 1-D soil column time history Effective Stress Analysis (ESA) was conducted to give an in depth assessment of the development of pore pressures in a number of soil deposits. For this analysis, ground motions, soil profiles and model parameters were required for the ESA. Deconvolution of ground motions recorded at the surface during the CES was used to develop some acceleration time histories to input at the base of the soil-column model. An analysis of 55 sites around Christchurch, where detailed site investigations have been carried out, was then conducted to identify some simplified soil profiles and soil characteristics. From this analysis, four soil profiles representative of different levels of liquefaction manifestation were developed. These were; two thick uniform and vertically continuous sandy deposits that were representative of sites were liquefaction manifested in both the Mw 7.1 September 2010 and the Mw 6.3 February 2011 earthquakes, and two vertically discontinuous profiles with interlayered liquefiable and non-liquefiable layers representative of sites that did not manifest liquefaction in either the September 2010 or the February 2011 events. Model parameters were then developed for these four representative soil profiles through calibration of the constitutive model in element test simulations. Simulations were run for each of the four profiles subject to three levels of loading intensity. The results were analysed for the effect of soil layer interaction. These were then compared to a simplified triggering analysis for the same four profiles to determine where the simplified method was accurate in predicting soil liquefaction (for the continuous sandy deposits) and were it was less accurate (the vertically discontinuous deposits where soil layer interaction was a factor).

Research papers, University of Canterbury Library

This project was initiated by ENGEO Limited and KiwiRail Holdings Limited to assess the stability of Slovens Creek Viaduct (specifically its western abutment) and a 3km section of rail corridor between Slovens Creek Viaduct and Avoca on the Midland Line (MDL). Commonly known as the scenic TranzAlpine rail journey (through Arthurs Pass National Park) the MDL connects Greymouth to Christchurch via Rolleston, where the MDL meets the Main South Line into Christchurch. The project area is approximately 40km southeast of Arthurs Pass Township, in the eastern extension of the Castle Hill Basin which is part of the Waimakariri Catchment and Canterbury Foothills. The field area is underlain by Rakaia Terrane, which is part of the Torlesse Composite Terrane forming the basement rock unit for the field area. Cretaceous-Tertiary rocks of the Castle Hill Basin overlie the basement strata and record a transgression-regression sequence, as well as mid-Oligocene submarine volcanism. The stratigraphic sequence in the Castle Hill Basin, and its eastern extension to Avoca, comprises two formations of the Eyre group, the older Broken River Formation and the younger Iron Creek Formation. Deep marine Porter Group limestones, marls, and tuffs of Oligocene age succeed the Iron Creek Formation of the Eyre Group, and probably records the maximum of the transgression. The Enys Formation lies disconformably on the Porter Group and is overlain unconformably by Late Pleistocene glacifluvial and glacial deposits. The Tertiary strata in the Slovens-Avoca rail corridor are weak, and the clay-rich tuff derived from mid-Oligocene volcanism is particularly prone to slaking. Extensive mapping carried out for this project has identified that some 90 percent of the surface along the length of the Slovens-Avoca corridor has been subject to mass movement. The landslides of the Slovens-Avoca rail corridor are clearly younger than the Last Glaciation, and Slovens Creek has been downcutting, with associated faulting and uplift, to form the present day geomorphology of the rail corridor. Deep-seated landslides in the rail corridor extend to Slovens Creek, locally deflecting the stream course, and a generic ground failure model for the rail corridor has been developed. Exploratory geotechnical investigations, including core drilling, installation of an inclinometer and a piezometer, enabled the construction of a simple ground model and cross section for the Slovens Creek Viaduct western abutment. Limit-equilibrium and pseudo-static slope stability analyses using both circular and block critical slip surface search methods were applied to the ground model for the western abutment of Slovens Creek Viaduct. Piezometric and strength data obtained during laboratory testing of core material have been used to constrain the western abutment stability assessment for one representative section line (C-C’). Prior to pseudo-static sensitivity analyses peak ground acceleration (PGA) for various Ultimate Limit State (ULS) design return periods, defined by an equation given in NZS1170.5:2004, were calculated and have been used as a calibration technique to find and compare specific PGA values for pseudo-static analyses in the Slovens Creek Viaduct area. The main purpose has been to provide an indication of how railway infrastructure could be affected by seismic events of various return periods defined by ULS design standards for the area. Limit equilibrium circular slip surface search methods, both grid search and auto refine search, indicated the slope is stable with a FoS greater than 1.0 returned from each, although one particular surface returned the lowest FoS in each. This surface is in the lower portion of the slope, adjacent to Slovens Stream and northeast of the MDL. As expected, pseudo-static analyses returned a lower FoS overall when compared to limit equilibrium analyses. The PGA analyses suggest that partial ground failure at the Slovens Creek Viaduct western abutment could occur in a 1 in 25-year return period event within materials on the slower slope beyond the immediate rail corridor. A ULS (1 in 500-year) event in the Slovens Creek Viaduct area would likely produce a PGA of ~0.9g, and the effects on the western abutment and rail infrastructure would most likely be catastrophic. Observed ground conditions for the western abutment of the Slovens Creek Viaduct suggest there is no movement within the landslide at depth within the monitoring timeframe of this project (22 May 2015 – 4 August 2015). Slope stability monitoring is recommended to be continued in two parts: (1) the inclinometer in BH1 is to be monitored on a six monthly basis for one year following completion of this thesis, and then annually unless ground movements become evident; and (2) surface movement monitoring should be installed using a fixed datum on the stable eastern abutment. Long-term stability management strategies for the Slovens Creek Viaduct western abutment are dependent upon future observed changes and ongoing monitoring. Hazard and risk assessment using the KiwiRail Qualitative Risk Assessment Framework (QRA) is recommended, and if slope stability becomes problematic for operation of the Midland Line consideration should be given to deep slope drainage. In the event of a large magnitude or high PGA earthquake all monitoring should be reviewed.

Research papers, University of Canterbury Library

This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.

Research Papers, Lincoln University

Liquefaction affects late Holocene, loose packed and water saturated sediment subjected to cyclical shear stress. Liquefaction features in the geological record are important off-fault markers that inform about the occurrence of moderate to large earthquakes (> 5 Mw). The study of contemporary liquefaction features provides a better understanding of where to find past (paleo) liquefaction features, which, if identified and dated, can provide information on the occurrence, magnitude and timing of past earthquakes. This is particularly important in areas with blind active faults. The extensive liquefaction caused by the 2010-2011 Canterbury Earthquake Sequence (CES) gave the geoscience community the opportunity to study the liquefaction process in different settings (alluvial, coastal and estuarine), investigating different aspects (e.g. geospatial correlation with landforms, thresholds for peak ground acceleration, resilience of infrastructures), and to collect a wealth geospatial dataset in the broad region of the Canterbury Plains. The research presented in this dissertation examines the sedimentary architecture of two environments, the alluvial and coastal settings, affected by liquefaction during the CES. The novel aim of this study is to investigate how landform and subsurface sedimentary architecture influence liquefaction and its surface manifestation, to provide knowledge for locating studies of paleoliquefaction in future. Two study cases documented in the alluvial setting showed that liquefaction features affected a crevasse splay and point bar ridges. However, the liquefaction source layer was linked to paleochannel floor deposits below the crevasse splay in the first case, and to the point bar deposits themselves in the second case. This research documents liquefaction features in the coastal dune system of the Canterbury Plains in detail for the first time. In the coastal dune setting the liquefiable layer is near the surface. The pore water pressure is vented easily because the coastal dune soil profile is entirely composed of non-cohesive, very well sorted sandy sediment that weakly resists disturbance from fluidised sediment under pressure. As a consequence, the liquefied flow does not need to find a specific crack through which the sediment is vented at the surface; instead, the liquefied sand finds many closely spaced conduits to vent its excess of pore water pressure. Therefore, in the coastal dune setting it is rare to observe discrete dikes (as they are defined in the alluvial setting), instead A horizon delamination (splitting) and blistering (near surface sills) are more common. The differences in styles of surface venting lead to contrasts in patterns of ejecta in the two environments. Whereas the alluvial environment is characterised by coalesced sand blows forming lineations, the coastal dune environment hosts apparently randomly distributed isolated sand blows often associated with collapse features. Amongst the techniques tested for the first time to investigate liquefaction features are: 3D GPR, which improved the accuracy of the trenching even six years after the liquefaction events; thin section analysis to investigate sediment fabric, which helped to discriminate liquefied sediment from its host sediment, and modern from paleoliquefaction features; a Random Forest classification based on the CES liquefaction map, which was used to test relationships between surface manifestation of liquefaction and topographic parameters. The results from this research will be used to target new study sites for future paleoliquefaction research and thus will improve the earthquake hazard assessment across New Zealand.

Research papers, University of Canterbury Library

Voluntary turnover has been the subject of scholarly inquiry for more than 100 years and much is understood about the drivers of turnover, and the decision-making processes involved. To date most models of voluntary turnover have assumed a rational and sequential decision process, initiated primarily by dissatisfaction with the job and the perceived availability of alternatives. Operating within a strong predictive research agenda, countless studies have sought to validate, extend and refine these traditional models through the addition of distal antecedents, mediators, moderators, and proximal antecedents of turnover. The net result of this research is a large body of empirical support for a somewhat modest relationship between job dissatisfaction, perceived alternatives, turnover intentions, job search behaviour and actual turnover. Far less scholarly attention has been directed at understanding shock-induced turnover that is not necessarily derived from dissatisfaction. Moreover, almost no consideration has been given to understanding how a significant and commonly experienced extra-organisational shock, such as natural disaster, might impact turnover decision making. Additionally, the dynamic and cumulative impacts of multiple shocks on turnover decision making have to date not been examined by turnover researchers. In addressing these gaps this thesis presents a leaver-centric theory of employee turnover decision making that is grounded in the post-disaster context. Data for the study were collected from in-depth interviews with 31 leavers in four large organisations in Christchurch, New Zealand; an area that experienced a major natural disaster in the form of the Canterbury earthquake sequence. This context provided a unique setting in which to study turnover as the primary shock was followed by a series of smaller shocks, resulting in a period of sustained disruption to the pre-shock status quo. Grounded theory methods are used to develop a typology of leaving which describes four distinct patterns of turnover decision making that follow a significant extra-organisational shock. The proposed typology not only addresses the heterogeneous and complex nature of turnover decision making, but also provides a more nuanced explanation of the turnover process explicating how the choice of decision path followed is influenced by four contextual factors which emerged from the data: (1) pre-shock motivational state; (2) decision difficulty; (3) experienced shock magnitude; and (4) the availability of resources. The research findings address several shortcomings in the extant literature on employee turnover, and offer practical recommendations for managers seeking to retain employees in a post-disaster setting.

Audio, Radio New Zealand

When the 6.3 magnitude earthquake struck Christchurch at 2:20 on Monday afternoon Barry Ross was outside his home at Godley Head on the Port Hills, where is he is the Department of Conservation caretaker. Barry's house is thought to be the closest to the epicentre that day and such was the force of the quake he was thrown to the ground and some of the cliff nearby fell away. He lost power and water for a few days but now he's back home, clearing up and determined to get on with life.

Images, UC QuakeStudies

A laminated sign for the 2011 Festival of Flowers attached to a wooden planter. The plants in the planter are dry and dead. The photographer comments, "The theme for the 2011 Festival of Flowers was 'burst! of water'. The Christchurch February earthquake came and water and sand called liquefaction burst out of the ground all around the area. Ironically the plants for the festival were left unattended in the cordoned off red zone and they would have loved a little burst of water".

Images, UC QuakeStudies

A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".

Research papers, University of Canterbury Library

This study contains an evaluation of the seismic hazard associated with the Springbank Fault, a blind structure discovered in 1998 close to Christchurch. The assessment of the seismic hazard is approached as a deterministic process in which it is necessary to establish: 1) fault characteristics; 2) the maximum earthquake that the fault is capable of producing and 3) ground motions estimations. Due to the blind nature of the fault, conventional techniques used to establish the basic fault characteristics for seismic hazard assessments could not be applied. Alternative methods are used including global positioning system (GPS) surveys, morphometric analyses along rivers, shallow seismic reflection surveys and computer modelling. These were supplemented by using multiple empirical equations relating fault attributes to earthquake magnitude, and attenuation relationships to estimate ground motions in the near-fault zone. The analyses indicated that the Springbank Fault is a reverse structure located approximately 30 km to the northwest of Christchurch, along a strike length of approximately 16 km between the Eyre and Ashley River. The fault does not reach the surface, buy it is associated with a broad anticline whose maximum topographic expression offers close to the mid-length of the fault. Two other reverse faults, the Eyrewell and Sefton Faults, are inferred in the study area. These faults, together with the Springbank and Hororata Faults and interpreted as part of a sys of trust/reverse faults propagating from a decollement located at mid-crustal depths of approximately 14 km beneath the Canterbury Plains Within this fault system, the Springbank Fault is considered to behave in a seismically independent way, with a fault slip rate of ~0.2 mm/yr, and the capacity of producing a reverse-slip earthquake of moment magnitude ~6.4, with an earthquake recurrence of 3,000 years. An earthquake of the above characteristics represents a significant seismic hazard for various urban centres in the near-fault zone including Christchurch, Rangiora, Oxford, Amberley, Kaiapoi, Darfield, Rollestion and Cust. Estimated peak ground accelerations for these towns range between 0.14 g to 0.5 g.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Images, eqnz.chch.2010

Low tide on the Avon River at New Brighton/Bexley. Note the original bank and the rock wall slipage on right. The white additions were added in March and April 2011 to protect the properties behind from flooding. Ultimately this area was "red zoned" with all houses removed or to be removed and the ground left till a rehabilitation method can ...

Research papers, The University of Auckland Library

The Catholic Cathedral is classified as a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes of 2010 and 2011. In the 2010 event the building presented slight to moderta damage, meanwhile in the 2011 one experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to develop the earthquake analysis of the building by 3D numerical simulations, and the results are compared/calibrated with the observed damage of the 2010 earthquake. Very accurate records were obtained during both earthquakes due to a record station located least than 80 m of distance from the building and used in the simulations. Moreover it is included in the model the soil structure interaction because it was observed that the ground and foundation played an important role on the seismic behavior of the structure. A very good agreement was found between the real observed damage and the nonlinear dynamic simulations described trough inelastic deformation (cracking) and building´s performance.

Research papers, University of Canterbury Library

Documenting earthquake-induced ground deformation is significant to assess the characteristics of past and contemporary earthquakes and provide insight into seismic hazard. This study uses airborne light detection and ranging (LiDAR) and conducts multi-disciplinary field techniques to document the surface rupture morphology and evaluate the paleoseismicity and seismic hazard parameters of the Hurunui segment of the Hope Fault in the northern South Island of New Zealand. It also documents and evaluates seismically induced features and ground motion characteristics of the 2010 Darfield and 2011 Christchurch earthquakes in the Port Hills, south of Christchurch. These two studies are linked in that they investigate the near-field coseismic features of large (Mw ~7.1) earthquakes in New Zealand and produce data for evaluating seismic hazards of future earthquakes. In the northern South Island of New Zealand, the Australian-Pacific plate boundary is characterised by strike-slip deformation across the Marlborough Fault System (MFS). The ENE-striking Hope Fault (length: ~230 km) is the youngest and southernmost fault in the MFS, and the second fastest slipping fault in New Zealand. The Hope Fault is a major source of seismic hazard in New Zealand and has ruptured (in-part) historically in the Mw 7.1 1888 Amuri earthquake. In the west, the Hurunui segment of the Hope Fault is covered by beech forest. Hence, its seismic hazard parameters and paleoearthquake chronology were poorly constrained and it was unknown whether the 1888 earthquake ruptured this segment or not and if so, to what extent. Utilising LiDAR and field data, a 29 km-long section of the Hurunui segment of the Hope Fault is mapped. LiDAR-mapping clearly reveals the principal slip zone (PSZ) of the fault and a suite of previously unrecognised structures that form the fault deformation zone (FDZ). FDZ width measurements from 415 locations reveal a spatially-variable, active FDZ up to ~500 m wide with an average width of 200 m. Kinematic analysis of the fault structures shows that the Hurunui segment strikes between 070° and 075° and is optimally oriented for dextral strike-slip within the regional stress field. This implies that the wide FDZ observed is unlikely to result from large-scale fault mis-orientation with respect to regional stresses. The analysis of FDZ width indicates that it increases with increased hanging wall topography and increased topographic relief suggesting that along-strike topographic perturbations to fault geometry and stress states increase fault zone complexity and width. FDZ width also increases where the tips of adjacent PSZ strands locally vary in strike, and where the thickness of alluvial deposits overlying bedrock increases. LiDAR- and photogrammetrically-derived topographic mapping indicates that the boundary between the Hurunui and Hope River segments is characterised by a ~850-m-wide right stepover and a 9º-14° fault bend. Paleoseismic trenching at Hope Shelter site reveals that 6 earthquakes occurred at A.D. 1888, 1740-1840, 1479-1623, 819-1092, 439-551, and 373- 419. These rupture events have a mean recurrence interval of ~298 ± 88 yr and inter-event times ranging from 98 to 595 yrs. The variation in the inter-event times is explained by (1) coalescing rupture overlap from the adjacent Hope River segment on to the Hurunui segment at the study site, (2) temporal clustering of large earthquakes on the Hurunui segment, and/or (3) ‘missing’ rupture events. It appears that the first two options are more plausible to explain the earthquake chronologies and rupture behaviour on the Hurunui segment, given the detailed nature of the geologic and chronologic investigations. This study provides first evidence for coseismic multi-segment ruptures on the Hope Fault by identifying a rupture length of 44-70 km for the 1888 earthquake, which was not confined to the Hope River segment (primary source for the 1888 earthquake). LiDAR data is also used to identify and measure dextral displacements and scarp heights from the PSZ and structures within the FDZ along the Hurunui segment. Reconstruction of large dextrally-offset geomorphic features shows that the vertical component of slip accounts for only ~1% of the horizontal displacements and confirms that the fault is predominantly strike-slip. A strong correlation exists between the dextral displacements and elevations of geomorphic features suggesting the possibility of age correlation between the geomorphic features. A mean single event displacement (SED) of 3.6 ± 0.7 m is determined from interpretation of sets of dextral displacements of ≤ 25 m. Using the available surface age data and the cumulative dextral displacements from Matagouri Flat, McKenzie Fan, Macs Knob and Hope River sites, and the mean SED, a mean slip rate of 12.2 ± 2.4 mm/yr, and a mean recurrence interval of ~320 ± 120 yr, and a potential earthquake magnitude of Mw 7.2 are determined for the Hurunui segment. This study suggests that the fault slip rate has been constant over the last ~15000 yr. Strong ground motions from the 2010 Darfield (Canterbury) earthquake displaced boulders and caused ground damage on some ridge crests in the Port Hills. However, the 2011 Christchurch earthquake neither displaced boulders nor caused ground damage at the same ridge crests. Documentation of locations (~400 m a.s.l.), lateral displacements (8-970 cm), displacement direction (250° ± 20°) of displaced boulders, in addition to their hosting socket geometries (< 1 cm to 50 cm depth), the orientation of the ridges (000°-015°) indicate that boulders have been displaced in the direction of instrumentally recorded transient peak ground horizontal displacements nearby and that the seismic waves have been amplified at the study sites. The co-existence of displaced and non-displaced boulders at proximal sites suggests small-scale ground motion variability and/or varying boulder-ground dynamic interactions relating to shallow phenomena such as variability in soil depth, bedrock fracture density and/or microtopography on the bedrock-soil interface. Shorter shaking duration of the 2011 Christchurch event, differing frequency contents and different source characteristics were all factors that may have contributed to generating circumstances less favourable to boulder displacement in this earthquake. Investigating seismically induced features, fault behaviour, site effects on the rupture behaviour, and site response to the seismic waves provides insights into fault rupture hazards.

Images, UC QuakeStudies

A view of part of the former Canterbury Public Library complex after the 22 February 2011 earthquake. On the left the 1870s section is visible. It has been red-stickered and the ground around it has been spray painted with the words, "Danger, wall". The building on the right is the former Librarian's House, which was built in 1894. It has been enclosed in a safety fence, and a section of masonry from its gable has collapsed. Containers have been stacked between the buildings to reinforce their walls.

Audio, Radio New Zealand

Mention the words "earthquake" in the same brief as "remediation" and it's enough to strike fear in the hearts of all New Zealanders, particularly those in Christchurch and other earthquake prone areas of the country. Now we find the chances of the ground shaking more violently in a quake is much higher than previously thought for large parts of the country. In some places it has doubled or even trebled. What are the ramifications of this new found knowledge? Joining the show to discuss is Michelle Grant, President of the Structural Engineering Society New Zealand, and Matt Gerstenberger, Principal Scientist and Seismologist at GNS Science

Images, UC QuakeStudies

A digitally manipulated image of the damaged statue of Scott which was removed from its original site beside Worcester Boulevard for safekeeping. The photographer comments, "During the February 2011 earthquake in Christchurch, New Zealand the statue of Robert Falcon Scott broke across the ankles and most of the statue came crashing to the ground. To commemorate a 100 years of association with Antarctica Christchurch council has laid out for viewing the statue in a prostrate position. I was lucky to encounter the statue before it was put into its glass display enclosure".

Images, UC QuakeStudies

Two aluminium drink cans which have split open. The photographer comments, "We had around 24 cans of diet coke in the top of the fridge when the devastating 6.1 earthquake hit Christchurch in New Zealand. The shaking caused one of the front feet of the fridge to fold, which made the fridge tip forward and causing the door to open. After all the shaking the cans had already when they flew out and hit the ground a lot of them exploded. These two cans show the explosive pressure that occurred best".

Images, UC QuakeStudies

A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".

Images, UC QuakeStudies

A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".

Images, UC QuakeStudies

A photograph of emergency management personnel examining a block of earthquake-damaged rooms at Stonehurst Accommodation on Gloucester Street. The bottom storey of the block has collapsed and the remaining rooms are now resting on an incline. The front walls of these rooms have also collapsed and the rubble has spilled in to the courtyard in front. Cordon tape has been draped across the courtyard in front of the rubble. In the foreground there is liquefaction on the ground from a liquefaction volcano.