Search

found 911 results

Research papers, University of Canterbury Library

Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building nonskeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.

Research Papers, Lincoln University

We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).

Research papers, The University of Auckland Library

Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.

Research papers, University of Canterbury Library

In most design codes, infill walls are considered as non-structural elements and thus are typically neglected in the design process. The observations made after major earthquakes (Duzce 1999, L’Aquila 2009, Christchurch 2011) have shown that even though infill walls are considered to be non-structural elements, they interact with the structural system during seismic actions. In the case of heavy infill walls (i.e. clay brick infill walls), the whole behaviour of the structure may be affected by this interaction (i.e. local or global structural failures such as soft storey mechanism). In the case of light infill walls (i.e. non-structural drywalls), this may cause significant economical losses. To consider the interaction of the structural system with the ‘non-structural ’infill walls at design stage may not be a practical approach due to the complexity of the infill wall behaviour. Therefore, the purpose of the reported research is to develop innovative technological solutions and design recommendations for low damage non-structural wall systems for seismic actions by making use of alternative approaches. Light (steel/timber framed drywalls) and heavy (unreinforced clay brick) non-structural infill wall systems were studied by following an experimental/numerical research programme. Quasi-static reverse cyclic tests were carried out by utilizing a specially designed full scale reinforced concrete frame, which can be used as a re-usable bare frame. In this frame, two RC beams and two RC columns were connected by two un-bonded post tensioning bars, emulating a jointed ductile frame system (PRESSS technology). Due to the rocking behaviour at the beam-column joint interfaces, this frame was typically a low damage structural solution, with the post-tensioning guaranteeing a linear elastic behaviour. Therefore, this frame could be repeatedly used in all of the tests carried out by changing only the infill walls within this frame. Due to the linear elastic behaviour of this structural bare frame, it was possible to extract the exact behaviour of the infill walls from the global results. In other words, the only parameter that affected the global results was given by the infill walls. For the test specimens, the existing practice of construction (as built) for both light and heavy non-structural walls was implemented. In the light of the observations taken during these tests, modified low damage construction practices were proposed and tested. In total, seven tests were carried out: 1) Bare frame , in order to confirm its linear elastic behaviour. 2) As built steel framed drywall specimen FIF1-STFD (Light) 3) As built timber framed drywall specimen FIF2-TBFD (Light) 4) As built unreinforced clay brick infill wall specimen FIF3-UCBI (Heavy) 5) Low damage steel framed drywall specimen MIF1-STFD (Light) 6) Low damage timber framed drywall specimen MIF2-TBFD (Light) 7) Low damage unreinforced clay brick infill wall specimen MIF5-UCBI (Heavy) The tests of the as built practices showed that both drywalls and unreinforced clay brick infill walls have a low serviceability inter-storey drift limit (0.2-0.3%). Based on the observations, simple modifications and details were proposed for the low damage specimens. The details proved to be working effectively in lowering the damage and increasing the serviceability drift limits. For drywalls, the proposed low damage solutions do not introduce additional cost, material or labour and they are easily applicable in real buildings. For unreinforced clay brick infill walls, a light steel sub-frame system was suggested that divides the infill panel zone into smaller individual panels, which requires additional labour and some cost. However, both systems can be engineered for seismic actions and their behaviour can be controlled by implementing the proposed details. The performance of the developed details were also confirmed by the numerical case study analyses carried out using Ruaumoko 2D on a reinforced concrete building model designed according to the NZ codes/standards. The results have confirmed that the implementation of the proposed low damage solutions is expected to significantly reduce the non-structural infill wall damage throughout a building.

Research papers, University of Canterbury Library

The collapse of Redcliffs’ cliff in the 22 February 2011 and 13 June 2011 earthquakes were the first times ever a major failure incident occurred at Redcliffs in approximately 6000 years. This master’s thesis is a multidisciplinary engineering geological investigation sought to study these particular failure incidents, focusing on collecting the data necessary to explain the cause and effect of the cliff collapsing in the event of two major earthquakes. This study provides quantitative and qualitative data about the geotechnical attributes and engineering geological nature of the sea-cut cliff located at Redcliffs. Results from surveying the geology of Redcliffs show that the exposed lithology of the cliff face is a variably jointed rock body of welded and (relatively intact) unwelded ignimbrite, a predominantly massive unit of brecciated tuff, and a covering of wind-blown loess and soil deposit (commonly found throughout Canterbury) on top of the cliff. Moreover, detailing the external component of the slope profile shows that Redcliffs’ cliff is a 40 – 80 m cliff with two intersecting (NE and SE facing) slope aspects. The (remotely) measured geometry of the cliff face comprises of multiple outstanding gradients, averaging a slope angle of ~67 degrees (post-13 June 2011), where the steepest components are ~80 degrees, whereas the gentle sloping sections are ~44 degrees. The physical structure of Redcliffs’ cliff drastically changed after each collapse, whereby seismically induced alterations to the slope geometry resulted in material deposited on the talus at the base of the cliff. Prior to the first collapse, the variance of the gradient down the slope was minimal, with the SE Face being the most variable with up to three major gradients on one cross section. However, after each major collapse, the variability increased with more parts of the cliff face having more than one major gradient that is steeper or gentler than the remainder of the slope. The estimated volume of material lost as a result of the gradient changes was 28,267 m³ in February and 11,360 m³ in June 2011. In addition, surveys of the cliff top after the failure incidents revealed the development of fissures along the cliff edge. Monitoring 10 fissures over three months indicated that fissured by the cliff edge respond to intense seismicity (generally ≥ Mw 4) by widening. Redcliffs’ cliff collapsed on two separate occasions as a result of an accumulated amount of damage of the rock masses in the cliff (caused by weathering and erosion over time), and two Mw 6.2 trigger earthquakes which shook the Redcliffs and the surrounding area at a Peak Ground Acceleration (PGA) estimated to be around 2 g. The results of the theoretical study suggests that PGA levels felt on-site during both instances of failure are the result of three major factors: source of the quake and the site affected; topographic amplification of the ground movement; the short distance between the source and the cliff for both fault ruptures; the focus of seismic energy in the direction of thrust faulting along a path that intercepts Redcliffs (and the Port Hills). Ultimately, failure on the NE and SE Faces of Redcliffs’ cliff was concluded to be global as every part of the exposed cliff face deposited a significant volume of material on the talus at the base of the cliff, with the exception of one section on the NE Face. The cliff collapses was a concurrent process that is a single (non-monotonic) event that operated as a complex series of (primarily) toppling rock falls, some sliding of blocks, and slumping of the soil mantle on top of the cliff. The first collapse had a mixture of equivalent continua slope movement of the heavily weathered / damaged surface of the cliff face, and discontinuous slope movement of the jointed inner slope (behind the heavily weathered surface); whereas the second collapse resulted in only discontinuous slope movement on account of the freshly exposed cliff face that had damage to the rock masses, in the form of old and (relatively) new discontinuous fractures, induced by earthquakes and aftershocks leading up to the point of failure.

Research papers, The University of Auckland Library

This section considers forms of collaboration in situated and community projects embedded in important spatial transformation processes in New Zealand cities. It aims to shed light on specific combinations of material and semantic aspects characterising the relation between people and their environment. Contributions focus on participative urban transformations. The essays that follow concentrate on the dynamics of territorial production of associations between multiple actors belonging both to civil society and constituted authority. Their authors were directly engaged in the processes that are reported and conceptualised, thereby offering evidence gained through direct hands-on experience. Some of the investigations use case studies that are conspicuous examples of the recent post-traumatic urban development stemming from the Canterbury earthquakes of 2010-2011. More precisely, these cases belong to the early phases of the programmes of the Christchurch recovery or the Wellington seismic prevention. The relevance of these experiences for the scope of this study lies in the unprecedented height of public engagement at local, national and international levels, a commitment reached also due to the high impact, both emotional and concrete, that affected the entire society.

Research papers, The University of Auckland Library

As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/

Research papers, University of Canterbury Library

This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.

Research papers, University of Canterbury Library

Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building non-skeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.

Research papers, Victoria University of Wellington

<b>New Zealand has experienced several strong earthquakes in its history. While an earthquake cannot be prevented from occurring, planning can reduce its consequences when it does occur. This dissertation research examines various aspects of disaster risk management policy in Aotearoa New Zealand.</b> Chapter 2 develops a method to rank and prioritise high-rise buildings for seismic retrofitting in Wellington, the earthquake-prone capital city of New Zealand. These buildings pose risks to Wellington’s long-term seismic resilience that are of clear concern to current and future policymakers. The prioritization strategy we propose, based on multi-criteria decision analysis (MCDA) methods, considers a variety of data on each building, including not only its structural characteristics, but also its location, its economic value to the city, and its social importance to the community around it. The study demonstrates how different measures, within four general criteria – life safety, geo-spatial location of the building, its economic role, and its socio-cultural role – can be operationalized into a viable framework for determining retrofitting/demolition policy priorities. Chapter 3 and chapter 4 analyse the Residential Red Zone (RRR) program that was implemented in Christchurch after the 2011 earthquake. In the program, approximately 8,000 homeowners were told that their homes were no longer permittable, and they were bought by the government (through the Canterbury Earthquake Recovery Authority). Chapter 3 examines the subjective wellbeing of the RRR residents (around 16000 people) after they were forced to move. We consider three indicators of subjective wellbeing: quality of life, stress, and emotional wellbeing. We found that demographic factors, health conditions, and the type of government compensation the residents accepted, were all significant determinants of the wellbeing of the Red Zone residents. More social relations, better financial circumstances, and the perception of better government communication were also all associated positively with a higher quality of life, less stress, and higher emotional wellbeing. Chapter 4 concentrates on the impact of this managed retreat program on RRR residents’ income. We use individual-level comprehensive, administrative, panel data from Canterbury, and difference in difference evaluation method to explore the effects of displacement on Red Zone residential residents. We found that compared to non-relocated neighbours, the displaced people experience a significant initial decrease in their wages and salaries, and their total income. The impacts vary with time spent in the Red Zone and when they moved away. Wages and salaries of those who were red-zoned and moved in 2011 were reduced by 8%, and 5.4% for those who moved in 2012. Females faced greater decreases in wages and salaries, and total income, than males. There were no discernible impacts of the relocation on people’s self-employment income.

Images, Alexander Turnbull Library

Text top left reads 'Downsizemic activity' and a seismic graph zigzags wildly but gradually tails off into the words 'Interest rates' which take a serious downwards trend. Context - The Christchurch earthquakes of 4 September 2010 and 22 February 2011 which have had an impact on an already stagnating economy. The Reserve Bank has made a relatively large 50-point cut in its benchmark interest rate, the Official Cash Rate (from 3% to 2.5 per cent). Critics say that inflation is already running unacceptably high and there is a threat of much higher inflation in a year or two when the rebuilding of Christchurch begins to put pressure on limited resources. The Reserve Bank acknowledged these factors, but it has chosen instead to focus on the immediate impact of the earthquake on the economy and particularly on all-important business and consumer sentiment. (Press editorial 12 March 2011) Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

The cartoon shows the Christchurch Anglican Cathedral tower in ruins and without its steeple. Above the drawing is the date '22.2.11'. A second version shows a huge magnitude 6.3 earthquake tremor on a seismic graph on top of which is the date '22.2.11'. Context - On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. The cathedral tower has collapsed and there has been devastating damage to the remaining structure. The Cathedral is one of around six sites of extreme concern around the city where many are believed to still be trapped. This earthquake followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Two versions of this cartoon are available Quantity: 2 digital cartoon(s).

Research papers, The University of Auckland Library

Recent earthquakes have shown that liquefaction and associated ground deformations are major geotechnical hazards to civil engineering infrastructures, such as pipelines. In particular, sewer pipes have been damaged in many areas in Christchurch as a result of liquefaction-induced lateral spreading near waterways and ground oscillation induced by seismic shaking. In this paper, the addition of a flexible AM liner as a potential countermeasure to increase sewer pipe capacity was investigated. Physical testing through 4-point loading test was undertaken to characterise material properties and the response of both unlined pipe and its lined counterpart. Next, numerical models were created using SAP2000 and ABAQUS to analyse buried pipeline response to transverse permanent ground displacement and to quantify, over a range of pipe segment lengths and soil parameters, the effectiveness of the AM liner in increasing displacement capacity. The numerical results suggest that the addition of the AM liner increases the deformation capacity of the unlined sewer pipe by as much as 50 times. The results confirmed that AM liner is an effective countermeasure for sewer pipes in liquefied ground not only in terms of increased deformation capacity but also the fact that AM-Liner can prevent influx of sand and water through broken pipes, making sewer pipes with liner remaining serviceable even under severe liquefaction condition.

Research papers, The University of Auckland Library

The M7.1 Darfield earthquake shook the town of Christchurch (New Zealand) in the early morning on Saturday 4th September 2010 and caused damage to a number of heritage unreinforced masonry buildings. No fatalities were reported directly linked to the earthquake, but the damage to important heritage buildings was the most extensive to have occurred since the 1931 Hawke‟s Bay earthquake. In general, the nature of damage was consistent with observations previously made on the seismic performance of unreinforced masonry buildings in large earthquakes, with aspects such as toppled chimneys and parapets, failure of gables and poorly secured face-loaded walls, and in-plane damage to masonry frames all being extensively documented. This report on the performance of the unreinforced masonry buildings in the 2010 Darfield earthquake provides details on typical building characteristics, a review of damage statistics obtained by interrogating the building assessment database that was compiled in association with post-earthquake building inspections, and a review of the characteristic failure modes that were observed.

Research papers, The University of Auckland Library

The Catholic Cathedral is classified as a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes of 2010 and 2011. In the 2010 event the building presented slight to moderta damage, meanwhile in the 2011 one experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to develop the earthquake analysis of the building by 3D numerical simulations, and the results are compared/calibrated with the observed damage of the 2010 earthquake. Very accurate records were obtained during both earthquakes due to a record station located least than 80 m of distance from the building and used in the simulations. Moreover it is included in the model the soil structure interaction because it was observed that the ground and foundation played an important role on the seismic behavior of the structure. A very good agreement was found between the real observed damage and the nonlinear dynamic simulations described trough inelastic deformation (cracking) and building´s performance.

Research papers, University of Canterbury Library

This paper presents a methodology by which both site-specific and spatially distributed ground motion intensity can be obtained immediately following an earthquake event. The methodology makes use of both prediction models for ground motion intensity and its correlation over spatial distances. A key benefit of the methodology is that the ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and also standard deviation, with the standard deviation being a function of the distance to nearby strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence. It is illustrated how these conditional maps can be used for post-event evaluation of liquefaction triggering criteria which have been adopted by the Department of Building and Housing (DBH). Secondly, the conditional distribution of response spectral ordinates is obtained at a specific location for the purposes of determining appropriate ground motion records for use in seismic response analyses of important structures at locations where direct recordings are absent.

Research papers, University of Canterbury Library

This paper presents an overview of the soil profile characteristics at strong motion station (SMS) locations in the Christchurch Central Business District (CBD) based on recently completed geotechnical site investigations. Given the variability of Christchurch soils, detailed investigations were needed in close vicinity to each SMS. In this regard, CPT, SPT and borehole data, and shear wave velocity (Vs) profiles from surface wave dispersion data in close vicinity to the SMSs have been used to develop detailed representative soil profiles at each site and to determine site classes according to the New Zealand standard NZS1170.5. A disparity between the NZS1170.5 site classes based on Vs and SPT N60 investigation techniques is highlighted, and additional studies are needed to harmonize site classification based on these techniques. The short period mode of vibration of soft deposits above gravels, which are found throughout Christchurch, are compared to the long period mode of vibration of the entire soil profile to bedrock. These two distinct modes of vibration require further investigation to determine their impact on the site response. According to current American and European approaches to seismic site classification, all SMSs were classified as problematic soil sites due to the presence of liquefiable strata, soils which are not directly accounted for by the NZS1170.5 approach.

Research papers, University of Canterbury Library

One of the failure modes that got the attention of researchers in the 2011 February New Zealand earthquake was the collapse of a key supporting structural wall of Grand Chancellor Hotel in Christchurch which failed in a brittle manner. However, until now this failure mode has been still a bit of a mystery for the researchers in the field of structural engineering. Moreover, there is no method to identify, assess and design the walls prone to such failure mode. Following the recent break through regarding the mechanism of this failure mode based on experimental observations (out-of-plane shear failure), a numerical model that can capture this failure was developed using the FE software DIANA. A comprehensive numerical parametric study was conducted to identify the key parameters contributing to the development of out-of-plane shear failure in reinforced concrete (RC) walls. Based on the earthquake observations, experimental and numerical studies conducted by the authors of this paper, an analytical method to identify walls prone to out-of-plane shear failure that can be used in practice by engineers is proposed. The method is developed based on the key parameters affecting the seismic performance of RC walls prone to out-of-plane shear failure and can be used for both design and assessment purposes

Research papers, University of Canterbury Library

Ground motion observations from the most significant 10 events in the 2010-2011 Canterbury earthquake sequence at near-source sites are utilized to scrutinize New Zealand (NZ)-specific pseudo-spectral acceleration (SA) empirical ground motion prediction equations (GMPE) (Bradley 2010, Bradley 2013, McVerry et al. 2006). Region-specific modification factors based on relaxing the conventional ergodic assumption in GMPE development were developed for the Bradley (2010) model. Because of the observed biases with magnitude and source-to-site distance for the McVerry et al. (2006) model it is not possible to develop region-specific modification factors in a reliable manner. The theory of non-ergodic empirical ground motion prediction is then outlined, and applied to this 10 event dataset to determine systematic effects in the between- and within-event residuals which lead to modifications in the predicted median and standard deviation of the GMPE. By examining these systematic effects over sub-regions containing a total of 20 strong motion stations within the Canterbury area, modification factors for use in region-specific ground motion prediction are proposed. These modification factors, in particular, are suggested for use with the Bradley et al. (2010) model in Canterbury-specific probabilistic seismic hazard analysis (PSHA) to develop revised design response, particularly for long vibration periods.

Research papers, University of Canterbury Library

This paper presents site-specific and spatially-distributed ground-motion intensity estimates which have been utilized in the aftermath of the 2010-2011 Canterbury, New Zealand earthquakes. The methodology underpinning the ground motion intensity estimation makes use of both prediction models for ground motion intensity and its within-event spatial correlation. A key benefit of the methodology is that the estimated ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and standard deviation, with the standard deviation being a function of the distance to nearby observations at strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence, which among other things, have been utilized for assessing liquefaction triggering susceptibility of land in residential areas. Secondly, the conditional distribution of response spectral ordinates is obtained at the location of the Canterbury Television building (CTV), which catastrophically collapsed in the 22 February 2011 earthquake. The conditional response spectra provide insight for the selection of ground motion records for use in forensic seismic response analyses of important structures at locations where direct recordings are absent.

Research papers, University of Canterbury Library

Following a major earthquake event, essential public amenities such as medical facilities and transport networks need to remain functional - not only to fulfil their ongoing role in serving the community but also to cope with the added and immediate demand of a population affected by a natural disaster. Furthermore, the economic implications of wide spread damage to housing and commercial facilities should not be discounted. A shift in design approach is required that is consistent with current trends towards performance based building design. The present aim is to achieve seismic energy dissipation during the earthquake event, without the aftermath of damage to structural elements, whilst maintaining design economies. Structures permitted to rock on their foundations and provide recoverable rotations at the beam-column interfaces offer significant advantages over those using conventional ductile detailing. A jointed construction philosophy can be applied whereby structural elements are connected with unbonded prestressing tendons. Supplemental damping is provided by replaceable flexural steel components designed to deform inelastically. For this research a multi-storey test building of one quarter scale has been constructed and tested on an earthquake simulator at the University of Canterbury. A computer model has been developed and a set ofpreliminary design procedures proposed.

Research papers, University of Canterbury Library

When disasters and crises, both man-made and natural, occur, resilient higher education institutions adapt in order to continue teaching and research. This may necessitate the closure of the whole institution, a building and/or other essential infrastructure. In disasters of large scale the impact can be felt for many years. There is an increasing recognition of the need for disaster planning to restructure educational institutions so that they become more resilient to challenges including natural disasters (Seville, Hawker, & Lyttle, 2012).The University of Canterbury (UC) was affected by seismic events that resulted in the closure of the University in September 2010 for 10 days and two weeks at the start of the 2011 academic year This case study research describes ways in which e-learning was deployed and developed by the University to continue and even to improve learning and teaching in the aftermath of a series of earthquakes in 2010 and 2011. A qualitative intrinsic embedded/nested single case study design was chosen for the study. The population was the management, support staff and educators at the University of Canterbury. Participants were recruited with purposive sampling using a snowball strategy where the early key participants were encouraged to recommend further participants. Four sources of data were identified: (1) documents such as policy, reports and guidelines; (2) emails from leaders of the colleges and academics; (3) communications from senior management team posted on the university website during and after the seismic activity of 2010 and 2011; and (4) semi-structured interviews of academics, support staff and members of senior management team. A series of inductive descriptive content analyses identified a number of themes in the data. The Technology Acceptance Model 2 (Venkatesh & Davis, 2000) and the Indicator of Resilience Model (Resilient Organisations, 2012) were used for additional analyses of each of the three cases. Within the University case, the cases of two contrasting Colleges were embedded to produce a total of three case studies describing e-learning from 2000 - 2014. One contrast was the extent of e-learning deployment at the colleges: The College of Education was a leader in the field, while the College of Business and Law had relatively little e-learning at the time of the first earthquake in September 2010. The following six themes emerged from the analyses: Communication about crises, IT infrastructure, Availability of e-learning technologies, Support in the use of e-learning technologies, Timing of crises in academic year and Strategic planning for e-learning. One of the findings confirmed earlier research that communication to members of an organisation and the general public about crises and the recovery from crises is important. The use of communication channels, which students were familiar with and already using, aided the dissemination of the information that UC would be using e-learning as one of the options to complete the academic year. It was also found that e-learning tools were invaluable during the crises and facilitated teaching and learning whilst freeing limited campus space for essential activities and that IT infrastructure was essential to e-learning. The range of e-learning tools and their deployment evolved over the years influenced by repeated crises and facilitated by the availability of centrally located support from the e-Learning support team for a limited set of tools, as well as more localised support and collaboration with colleagues. Furthermore, the reasons and/or rate of e-learning adoption in an educational institution during crises varied with the time of the academic year and the needs of the institution at the time. The duration of the crises also affected the adoption of e-learning. Finally, UC’s lack of an explicit e-learning strategy influenced the two colleges to develop college-specific e-learning plans and those College plans complemented the incorporation of e-learning for the first time in the University’s teaching and learning strategy in 2013. Twelve out of the 13 indicators of the Indicators of Resilience Model were found in the data collected for the study and could be explained using the model; it revealed that UC has become more resilient with e-learning in the aftermath of the seismic activities in 2010 and 2011. The interpretation of the results using TAM2 demonstrated that the adoption of technologies during crises aided in overcoming barriers to learning at the time of the crisis. The recommendations from this study are that in times of crises, educational institutions take advantage of Cloud computing to communicate with members of the institution and stakeholders. Also, that the architecture of a university’s IT infrastructure be made more resilient by increasing redundancy, backup and security, centralisation and Cloud computing. In addition, when under stress it is recommended that new tools are only introduced when they are essential.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i

Research papers, The University of Auckland Library

There is very little research on total house strength that includes contributions of non-structural elements. This testing programme provides inclusive stiffness and response data for five houses of varying ages. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and/or stiffness, and to identify damage thresholds. Dynamic characteristics including natural periods, which ranged from 0.14 to 0.29s were also investigated. Two houses were quasi-statically loaded up to approximately 130kN above the foundation in one direction. Another unidirectional test was undertaken on a slab-on-grade two-storey house, which was also snapback tested. Two other houses were tested using cyclic quasi-static loading, and between cycles snapback tests were undertaken to identify the natural period of each house, including foundation and damage effects. A more detailed dynamic analysis on one of the houses provided important information on seismic safety levels of post-quake houses with respect to different hazard levels in the Christchurch area. While compared to New Zealand Building Standards all tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. http://www.aees.org.au/downloads/conference-papers/2015-2/

Research papers, University of Canterbury Library

The capability of self-compacting concrete (SCC) in flowing through and filling in even the most congested areas makes it ideal for being used in congested reinforced concrete (RC) structural members such as beam-column joints (BCJ). However, members of tall multi-storey structures impose high capacity requirements where implementing normal-strength self-compacting concrete is not preferable. In the present study, a commercially reproducible high-strength self-compacting concrete (HSSCC), a conventionally vibrated high-strength concrete (CVHSC) and a normal strength conventionally vibrated concrete (CVC) were designed using locally available materials in Christchurch, New Zealand. Following the guidelines of the New Zealand concrete standards NZS3101, seven beam-column joints (BCJ) were designed. Factors such as the concrete type, grade of reinforcement, amount of joint shear stirrups, axial load, and direction of casting were considered variables. All BCJs were tested under a displacement-controlled quasi-static reversed cyclic regime. The cracking pattern at different load levels and the mode of failure were also recorded. In addition, the load, displacement, drift, ductility, joint shear deformations, and elongation of the plastic hinge zone were also measured during the experiment. It was found that not only none of the seismically important features were compromised by using HSSCC, but also the quality of material and ease of construction boosted the performance of the BCJs.

Research papers, University of Canterbury Library

The city of Christchurch and its surrounds experienced widespread damage due to soil liquefaction induced by seismic shaking during the Canterbury earthquake sequence that began in September 2010 with the Mw7.1 Darfield earthquake. Prior to the start of this sequence, the city had a large network of strong motion stations (SMSs) installed, which were able to record a vast database of strong ground motions. This paper uses this database of strong ground motion recordings, observations of liquefaction manifestation at the ground surface, and data from a recently completed extensive geotechnical site investigation program at each SMS to assess a range of liquefaction evaluation procedures at the four SMSs in the Christchurch Central Business District (CBD). In general, the characteristics of the accelerograms recorded at each SMS correlated well with the liquefaction evaluation procedures, with low liquefaction factors of safety predicted at sites with clear liquefaction identifiers in the ground motions. However, at sites that likely liquefied at depth (as indicated by evaluation procedures and/or inferred from the characteristics of the recorded surface accelerograms), the presence of a non-liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects. Because of this, there was not a good correlation between surface manifestation and two surface manifestation indices, the Liquefaction Potential Index (LPI) and the Liquefaction Severity Number (LSN).

Research papers, University of Canterbury Library

Severe liquefaction was repeatedly observed during the 2010 - 2011 C hristchurch earthquake s , particularly affecting deposits of fine sands and silty sands of recent fluvial or estuarine origin. The effects of liquefaction included major sliding of soil tow ard water bodies ( i.e. lateral spreading ) rang ing from centimetres to several metres. In this paper, a series of undrained cyclic torsional shear tests were conducted to evaluate the liquefaction and extremely large deformation properties of Christchurch b oiled sand . In these tests, the simple shear conditions were reproduced in order to apply realistic stress conditions that soil s experience in the field during horizontal seismic shaking. Several hollow cylindrical medium dense specimens ( D r = 50%) were pr epared by pluviation method, isotropically consolidated at an effective stress of 100 kPa and then cyclically sheared under undrained conditions up to 10 0% double amplitude shear strain (γ DA ) . The cyclic strength at different levels of γ DA of 7.5%, 15%, 3 0 % and 6 0%, development of extremely large post - liquefaction deformation and shear strain locali s ation properties were assessed from the analysis of the effective stress paths and stress - strain responses . To reveal possible distinctiveness, the cyclic undra ined behaviour of CHCH boiled sand was compared with that of Toyoura sand previously examined under similar testing conditions

Research papers, University of Canterbury Library

This study analyses the Earthquake Commission’s (EQC) insurance claims database to investigate the influence of seismic intensity and property damage resulting from the Canterbury Earthquake Sequence (CES) on the repair costs and claim settlement duration for residential buildings. Firstly, the ratio of building repair cost to its replacement cost was expressed as a Building Loss Ratio (BLR), which was further extended to Regional Loss Ratio (RLR) for greater Christchurch by multiplying the average of all building loss ratios with the proportion of building stock that lodged an insurance claim. Secondly, the total time required to settle the claim and the time taken to complete each phase of the claim settlement process were obtained. Based on the database, the regional loss ratio for greater Christchurch for three events producing shakings of intensities 6, 7, and 8 on the modified Mercalli intensity scale were 0.013, 0.066, and 0.171, respectively. Furthermore, small (less than NZD15,000), medium (between NZD15,000 and NZD100,000), and large (more than NZD100,000) claims took 0.35-0.55, 1.95-2.45, and 3.35-3.85 years to settle regardless of the building’s construction period and earthquake intensities. The number of claims was also disaggregated by various building characteristics to evaluate their relative contribution to the damage and repair costs.

Research papers, University of Canterbury Library

Buildings subject to earthquake shaking will tend to move not only horizontally but also rotate in plan. In-plan rotation is known as “building torsion” and it may occur for a variety of reasons, including stiffness and strength eccentricity and/or torsional effects from ground motions. Methods to consider torsion in structural design standards generally involve analysis of the structure in its elastic state. This is despite the fact that the structural elements can yield, thereby significantly altering the building response and the structural element demands. If demands become too large, the structure may collapse. While a number of studies have been conducted into the behavior of structures considering inelastic building torsion, there appears to be no consensus that one method is better than another and as a result, provisions within current design standards have not adopted recent proposals in the literature. However, the Canterbury Earthquakes Royal Commission recently made the recommendation that provisions to account for inelastic torsional response of buildings be introduced within New Zealand building standards. Consequently, this study examines how and to what extent the torsional response due to system eccentricity may affect the seismic performance of a building and considers what a simple design method should account for. It is concluded that new methods should be simple, be applicable to both the elastic and inelastic range of response, consider bidirectional excitation and include guidance for multi-story systems.

Research papers, University of Canterbury Library

This thesis addresses the topic of local bond behaviour in RC structures. The mechanism of bond refers to the composite action between deformed steel reinforcing bars and the surrounding concrete. Bond behaviour is an open research topic with a wide scope, particularly because bond it is such a fundamental concept to structural engineers. However, despite many bond-related research findings having wide applications, the primary contribution of this research is an experimental evaluation of the prominent features of local bond behaviour and the associated implications for the seismic performance of RC structures. The findings presented in this thesis attempt to address some structural engineering recommendations made by the Canterbury Earthquakes Royal Commission following the 2010-2011 Canterbury (New Zealand) earthquake sequence. A chapter of this thesis discusses the structural behaviour of flexure-dominated RC wall structures with an insufficient quantity of longitudinal reinforcement, among other in situ conditions, that causes material damage to predominantly occur at a single crack plane. In this particular case, the extent of concrete damage and bond deterioration adjacent to the crack plane will influence the ductility capacity that is effectively provided by the reinforcing steel. As a consequence of these in situ conditions, some lightly reinforced wall buildings in Christchurch lost their structural integrity due to brittle fracture of the longitudinal reinforcement. With these concerning post-earthquake observations in mind, there is the underlying intention that this thesis presents experimental evidence of bond behaviour that allows structural engineers to re-assess their confidence levels for the ability of lightly reinforced concrete structures to achieve the life-safety seismic performance objective the ultimate limit state. Three chapters of this thesis are devoted to the experimental work that was conducted as the main contribution of this research. Critical details of the experimental design, bond testing method and test programme are reported. The bond stress-slip relationship was studied through 75 bond pull-out tests. In order to measure the maximum local bond strength, all bond tests were carried out on deformed reinforcing bars that did not yield as the embedded bond length was relatively short. Bond test results have been presented in two separate chapters in which 48 monotonic bond tests and 27 cyclic bond tests are presented. Permutations of the experiments include the loading rate, cyclic loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and position of the embedded bond region within the specimen (close or far away to the free surface). The parametric study showed that the concrete strength significantly influences the maximum bond strength and that it is reasonable to normalise the bond stress by the square-root of the concrete compressive strength, √(f'c). The generalised monotonic bond behaviour is described within. An important outcome of the research is that the measured bond strength and stiffness was higher than stated by the bond stress-slip relationship in the fib Model Code 2010. To account for these observed differences, an alternative model is proposed for the local monotonic bond stress-slip relationship. Cyclic bond tests showed a significant proportion of the total bond degradation occurs after the loading cycle in the peak bond strength range, which is when bond slip has exceeded 0.5 mm. Subsequent loading to constant slip values showed a linear relationship between the amount of bond strength degradation and the log of the number of cycles that were applied. To a greater extent, the cyclic bond deterioration depends on the bond slip range, regardless of whether the applied load cycling is half- or fully-reversed. The observed bond deterioration and hysteretic energy dissipated during cyclic loading was found to agree reasonably well between these cyclic tests with different loading protocols. The cyclic bond deterioration was also found to be reasonably consistent exponential damage models found in the literature. This research concluded that the deformed reinforcing bars used in NZ construction, embedded in moderate to high strength concrete, are able to develop high local bond stresses that are mobilised by a small amount of local bond slip. Although the relative rib geometry was not varied within this experimental programme, a general conclusion of this thesis is that deformed bars currently available in NZ have a relative rib bearing area that is comparatively higher than the test bars used in previous international research. From the parametric study it was found that the maximum monotonic bond strength is significant enhanced by dynamic loading rates. Experimental evidence of high bond strength and initial bond stiffness generally suggests that only a small amount of local bond slip that can occur when the deformed test bar was subjected to large tension forces. Minimal bond slip and bond damage limits the effective yielding length that is available for the reinforcing steel to distribute inelastic material strains. Consequently, the potential for brittle fracture of the reinforcement may be a more problematic and widespread issue than is apparent to structural engineers. This research has provided information that improve the reliability of engineering predictions (with respect to ductility capacity) of maximum crack widths and the extent of bond deterioration that might occur in RC structures during seismic actions.