A video of an address by Joanna Norris, Editor of The Press, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
In front of the Williams Street Bridge in Kaiapoi. This part of the footpath was damaged when the concrete abutment rose during the earthquake, forcing its way through the pavement and into the open. Fencing has been placed around this section of the bridge until work can be done to make it safe to walk on.
A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge to a large mansion on a huge section was displaced by half a metre".
A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge to a large mansion on a huge section was displaced by half a metre".
Professor Jacky Bowring has been a consultant to both the Ministry for Culture and Heritage, and CERA for the process for the EQ Memorial, as well as for the Christchurch City Council from the early days of the Recovery Plan, when the section on 'Remembering the Earthquakes' was developed. It was one of those times when her areas of research and passion suddenly became very real.
One landscape colour digital photograph taken on 25 February 2011 showing earthquake damage to houses on the western side of Canterbury Street between London and Winchester Streets. The photograph shows large sections of a brick firewall which have fallen onto the roof of the neighbouring house. The close proximity of buildings in Lyttelton led...
This thesis is concerned with modelling rockfall parameters associated with cliff collapse debris and the resultant “ramp” that formed following the high peak ground acceleration (PGA) events of 22 February 2011 and 13 June 2011. The Christchurch suburb of Redcliffs, located at the base of the Port Hills on the northern side of Banks Peninsula, New Zealand, is comprised of Miocene-age volcanics with valley-floor infilling marine sediments. The area is dominated by basaltic lava flows of the Mt Pleasant Formation, which is a suite of rocks forming part of the Lyttelton Volcanic Group that were erupted 11.0-10.0Ma. Fresh exposure enabled the identification of a basaltic ignimbrite unit at the study site overlying an orange tuff unit that forms a marker horizon spanning the length of the field area. Prior to this thesis, basaltic ignimbrite on Banks Peninsula has not been recorded, so descriptions and interpretations of this unit are the first presented. Mapping of the cliff face by remote observation, and analysis of hand samples collected from the base of the debris slopes, has identified a very strong (>200MPa), columnar-jointed, welded unit, and a very weak (<5MPa), massive, so-called brecciated unit that together represent the end-member components of the basaltic ignimbrite. Geochemical analysis shows the welded unit is picrite basalt, and the brecciated unit is hawaiite, making both clearly distinguishable from the underlying trachyandesite tuff. RocFall™ 4.0 was used to model future rockfalls at Redcliffs. RocFall™ is a two-dimensional (2D), hybrid, probabilistic modelling programme for which topographical profile data is used to generate slope profiles. GNS Science collected the data used for slope profile input in March 2011. An initial sensitivity analysis proved the Terrestrial Laser Scan (TLS)-derived slope to be too detailed to show any results when the slope roughness parameter was tested. A simplified slope profile enabled slope roughness to be varied, however the resulting model did not correlate with field observations as well. By using slope profile data from March 2011, modelled rockfall behaviour has been calibrated with observed rockfall runout at Redcliffs in the 13 June 2011 event to create a more accurate rockfall model. The rockfall model was developed on a single slope profile (Section E), with the chosen model then applied to four other section lines (A-D) to test the accuracy of the model, and to assess future rockfall runout across a wider area. Results from Section Lines A, B, and E correlate very well with field observations, with <=5% runout exceeding the modelled slope, and maximum bounce height at the toe of the slope <=1m. This is considered to lie within observed limits given the expectation that talus slopes will act as a ramp on which modelled rocks travel further downslope. Section Lines C and D produced higher runout percentage values than the other three section lines (23% and 85% exceeding the base of the slope, respectively). Section D also has a much higher maximum bounce height at the toe of the slope (~8.0m above the slope compared to <=1.0m for the other four sections). Results from modelling of all sections shows the significance of the ratio between total cliff height (H) and horizontal slope distance (x), and of maximum drop height to the top of the talus (H*) and horizontal slope distance (x). H/x can be applied to the horizontal to vertical ratio (H:V) as used commonly to identify potential slope instability. Using the maximum value from modelling at Redcliffs, the future runout limit can be identified by applying a 1.4H:1V ratio to the remainder of the cliff face. Additionally, the H*/x parameter shows that when H*/x >=0.6, the percentage of rock runout passing the toe of the slope will exceed 5%. When H*/x >=0.75, the maximum bounce height at the toe of the slope can be far greater than when H*/x is below this threshold. Both of these parameters can be easily obtained, and can contribute valuable guideline data to inform future land-use planning decisions. This thesis project has demonstrated the applicability of a 2D probabilistic-based model (RocFall™ 4.0) to evaluate rockfall runout on the talus slope (or ramp) at the base of ~35-70m high cliff with a basaltic ignimbrite source. Limitations of the modelling programme have been identified, in particular difficulties with adjusting modelled roughness of the slope profile and the inability to consider fragmentation. The runout profile using RocFall™ has been successfully calibrated against actual profiles and some anomalous results have been identified.
Photograph captioned, "Dallington used to be the most popular suburb in New Zealand to live in. And that makes sense, because it's halfway between the beach and the city. It's close enough to town but far enough away, as well. There were good schools in the area. The mall was close. It's got the river and the tree lined sections, everything. It was special all right".
A PDF copy of five 'Canterbury Rollercoaster' images. The images depict a different section of the rollercoaster, and one reads, "Life's full of ups and downs. Where are you, your friends, and whanau at? Visit allright.org.nz." The 'Canterbury Rollercoaster' was designed to raise awareness about emotional literacy in Canterbury.
A photograph of St John the Baptist Church on the corner of Madras and Hereford Streets. Sections of the closest wall have crumbled and steel bracing has been used to hold up the rest. Wire fencing has been placed around the bracing as a cordon.
A photograph of the letterbox and a section of the fence around Donna Allfrey's property at 406 Oxford Terrace. The house number is missing from the letterbox and a picket is missing from the fence. The photographer comments, "The mail is no longer being delivered".
A video of an address by Scott Noyes, Energy Management Specialist for Schneider Electric NZ, at the 2014 Seismics and the City forum. This talk was part of the Building Connectivity section, and focused on collaborative and innovative initiatives relevant to the rebuild of Greater Christchurch.
A video of an address by Antony Gough, Managing Director of Hereford Holdings Ltd, at the 2014 Seismics and the City forum. This talk was part of the Building Opportunities section, and explored commercial development opportunities in Central Christchurch, the constraints, and what needs to be done.
A photograph of the earthquake damage to a block of shops on Manchester Street including While you Wait Studios, Aji Global Grocery & Chocolateria, and Peaches and Cream. Sections of the wall above crumbled, the bricks falling to the footpath and destroying the awnings. The rubble has been cleared from the footpath.
A photograph of a pile of twisted steel reinforcement and other rubble at the entrance to the Smiths City car park on Dundas Street. In the background a section of the collapsed car park has not been demolished yet. Many cars are still parked on the top floor.
A photograph of a section of a piece of street art on the wall of a building between Brighton Mall and Hawke Street. The artwork depicts Sonic, Amy Rose, and Knuckles the Echidna from the Sonic the Hedgehog video games.
A photograph of the earthquake damage to a building on the corner of Gloucester and Manchester Streets. Sections of the façade have crumbled, the bricks spilling onto the footpath below. Wire fencing has been placed around the building as a cordon. In the distance there are many other earthquake-damaged buildings.
A photograph of the earthquake damage to a building on the corner of Hereford and Madras Streets. Sections of the walls have crumbled, the bricks spilling onto the footpath below. The frame of a window has fallen onto the scaffolding, and many of the glass windows have smashed.
A photograph of the earthquake damage to Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have warped, breaking the glass. USAR codes have been spray-painted on one of the columns.
A photograph of a member of the Wellington Emergency Management Office on the ground floor of the Crowne Plaza Hotel. Sections of the ceiling and plaster dust have fallen onto the ground and there is a large crack in the wall to the right.
A photograph looking into the basement of the Copthorne Hotel. Rolls of carpet and chairs are sitting in a pool of water. To the left there is damage to one of the concrete beams. A section of the concrete has crumbled, exposing the steel reinforcement underneath.
A video of an address by Peter Townsend, CEO of the Canterbury Employers' Chamber of Commerce, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
A video of an address by Mike Greer, Director of Mike Greer Homes Ltd, at the 2014 Seismics and the City forum. This talk was part of the Building Opportunities section, and focused on the housing needs and the residential building opportunities in the inner city, Greater Christchurch, and the Canterbury region.
An image from a Army News March 2011 article titled, "Transport". The image shows PTE Taylor, a NZ Army Driver, and Section Commander 3 Transport CPL Marvin with a stack of chemical toilets. The toilets were being delivered to residents in Christchurch who has been without water for ten days.
One landscape colour digital photograph taken on 11 May 2011 showing the town of Lyttelton looking north from the footpath of the Oxford Street Over bridge. The Lyttelton streetscape has changed dramatically from its pre-earthquake appearance and will continue to change as new buildings are erected on empty sections. In this photograph the dome...
One landscape colour digital photograph taken on 27 April 2011 showing the demolition of the Harbourlight Theatre on London Street. In the background of the photo the damage to headstones in the Roman Catholic and Dissenters sections of the cemetery on Reserve Terrace can be seen. Architect In Christchurch's Central Business District many of the...
Liquefaction affects late Holocene, loose packed and water saturated sediment subjected to cyclical shear stress. Liquefaction features in the geological record are important off-fault markers that inform about the occurrence of moderate to large earthquakes (> 5 Mw). The study of contemporary liquefaction features provides a better understanding of where to find past (paleo) liquefaction features, which, if identified and dated, can provide information on the occurrence, magnitude and timing of past earthquakes. This is particularly important in areas with blind active faults. The extensive liquefaction caused by the 2010-2011 Canterbury Earthquake Sequence (CES) gave the geoscience community the opportunity to study the liquefaction process in different settings (alluvial, coastal and estuarine), investigating different aspects (e.g. geospatial correlation with landforms, thresholds for peak ground acceleration, resilience of infrastructures), and to collect a wealth geospatial dataset in the broad region of the Canterbury Plains. The research presented in this dissertation examines the sedimentary architecture of two environments, the alluvial and coastal settings, affected by liquefaction during the CES. The novel aim of this study is to investigate how landform and subsurface sedimentary architecture influence liquefaction and its surface manifestation, to provide knowledge for locating studies of paleoliquefaction in future. Two study cases documented in the alluvial setting showed that liquefaction features affected a crevasse splay and point bar ridges. However, the liquefaction source layer was linked to paleochannel floor deposits below the crevasse splay in the first case, and to the point bar deposits themselves in the second case. This research documents liquefaction features in the coastal dune system of the Canterbury Plains in detail for the first time. In the coastal dune setting the liquefiable layer is near the surface. The pore water pressure is vented easily because the coastal dune soil profile is entirely composed of non-cohesive, very well sorted sandy sediment that weakly resists disturbance from fluidised sediment under pressure. As a consequence, the liquefied flow does not need to find a specific crack through which the sediment is vented at the surface; instead, the liquefied sand finds many closely spaced conduits to vent its excess of pore water pressure. Therefore, in the coastal dune setting it is rare to observe discrete dikes (as they are defined in the alluvial setting), instead A horizon delamination (splitting) and blistering (near surface sills) are more common. The differences in styles of surface venting lead to contrasts in patterns of ejecta in the two environments. Whereas the alluvial environment is characterised by coalesced sand blows forming lineations, the coastal dune environment hosts apparently randomly distributed isolated sand blows often associated with collapse features. Amongst the techniques tested for the first time to investigate liquefaction features are: 3D GPR, which improved the accuracy of the trenching even six years after the liquefaction events; thin section analysis to investigate sediment fabric, which helped to discriminate liquefied sediment from its host sediment, and modern from paleoliquefaction features; a Random Forest classification based on the CES liquefaction map, which was used to test relationships between surface manifestation of liquefaction and topographic parameters. The results from this research will be used to target new study sites for future paleoliquefaction research and thus will improve the earthquake hazard assessment across New Zealand.
Smoke billowing from the remains of the collapsed Canterbury Television Building on Madras Street. Flames are visible through a gap in the intact section of the building. Below, emergency personnel can be seen searching the rubble for trapped people. On the right, two workers are using a piece of corrugated plastic as a slide to remove objects from the rubble.
The A and T Burt building on Ferry Road in Woolston. Bricks from the top section of the building have fallen away. Signs advertising two businesses housed in the building, Superheat and Junk and Disorderly, can be seen sitting in front of it. The footpath is covered with brick dust and small pieces of masonry from when the larger pieces were cleared away.
Members of the public speaking with police officers on the corner of Durham Street and Armagh Street in the aftermath of the 22 February earthquake. On the right the timber section of the historic Provincial Council Chambers can be seen, including the clock tower which has collapsed onto the road. Armagh Street leading into the city has been cordoned off by red tape.