Search

found 802 results

Images, Alexander Turnbull Library

The title reads 'Shipping container shopping for Merivale?.. The cartoon shows a row of shops that have been created from containers. An oil slick seeps from one of them. Someone in 'Chez Merivale' says 'Nice idea darling. But did they have to use the Rena's containers?' Context: Refers to the container ship 'Rena' which is grounded on the Astrolabe Reef off the Bay of Plenty and threatens to become a disaster of huge proportions as oil spews into the sea. Modified shipping containers have been put in place in the suburb of Merivale to replace broken shops. Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

The former Earthquake Commission minister, Gerry Brownlee, is defending EQC over claims its assessors in Christchurch were not properly qualified. A growing number of homeowners in the city are discovering EQC assessors have completely missed quake damage including broken foundations costing hundreds of thousands to repair. That's been disastrous for people who've bought homes with hidden damage who are sometimes finding private insurers unwilling to cover the cost of putting right mistakes made by EQC. The company hired by EQC to carry out repairs was Fletcher Construction. Its chief executive at the time, Mark Binns, told Checkpoint that EQC probably hired unqualified people to assess quake damaged homes. Gerry Brownlee refused to be drawn on the comments from Mr Binns. But when asked by RNZ Christchurch reporter, Conan Young, if it was acceptable to have retired policemen, school principals and vacuum cleaner salesmen carrying out assessments for EQC, he admitted finding enough people to do the job was a challenge.

Audio, Radio New Zealand

As Auckland and Northland brace for more atrocious weather, city leaders are calling for funding to repair the city's broken infrastructure to be along the lines of the help given to Christchurch after the quakes. Auckland deputy mayor Desley Simpson says that the damage so far is equivalent to the biggest non earthquake event the country has ever had and should be treated accordingly. The Opportunities Party says the "alliance" model established after the earthquakes, was effective and would work for Auckland's rebuild, because it provides a structure that the Central Government can fund directly. ToP leader Raf Manji was a Christchurch councillor after the quakes and closely involved in the rebuild. He tells Kathryn Ryan it is vital to ensure water and transport infrastructure is repaired quickly and efficiently, especially with a view to future extreme weather events - and there is much to learn from the post-quake rebuild.

Images, Alexander Turnbull Library

Text reads '150 great reasons to live in Christchurch'. Someone quotes 'It's only 250 metres to empty your chemical toilet'. An elderly woman trudges through the rain pushing a trolley on which is balanced her chemical toilet. Context - Following the Christchurch earthquake of 22 February 2011 when a great deal of damage was done to the sewage system because of broken pipes thousands of chemical toilets have been distributed but now there seems to be confusion over whether it is safe to use flushing toilets when the sewage system cannot support it or whether residents should still be using chemical toilets. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Text reads 'Collateral damage'. A couple stand looking at a broken column surrounded by fallen masonry; text on the column reads 'Curbs on govt spending'. The man says 'It's a shame. It was due to be unveiled in a few weeks'. Context - the Christchurch earthquake of 22 February 2011; curbs on government spending can be seen as 'collateral damage'. In December 2010 Finance Minister Bill English pledged to keep a cap on spending to rein in a widening deficit as slower consumer demand hinders the economic recovery and hurts tax receipts. The earthquake will make economic recovery even more difficult. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A cheerful old woman sits with a cup of tea on her sofa watching television with an enormous boulder beside her. She says 'Big and solid it reminded me of my late husband but then I realized that in two weeks it hasn't once broken wind, belched or called for a beer, or gone and changed the channel and I think I'm in love!' The little Evans man says 'Stone me!' Context - The Christchurch earthquake of 22 February 2011. Some people remain cheerful and optimistic in spite of dreadfully difficult conditions. Colour and black and white versions available Quantity: 2 digital cartoon(s).

Audio, Radio New Zealand

A review of the week's news, including... Maori across the country accepting a challenge set by the Maori King to battle the Government over water rights, the Government says Labour's new education policies are flawed, expensive and unnecessary while it's being accused of exploiting the Christchurch earthquakes to force through sweeping changes to schools in the city, Tuhoe is to get 170-million dollars in compensation and more control over Te Urewera National Park in its settlement with the Crown for historical grievances, hundreds of angry and stunned paper mill workers in Kawerau are in limbo over how many will lose their jobs with Norske Skog announcing its halving production, the shotputter Valerie Adams will receive her gold medal in a public ceremony in Auckland on Wednesday, details from of the police investigation into John Bank's mayoral campaign donations have been made public, a man who helped his chronically ill wife commit suicide has broken down in tears after being discharged without conviction and Invercargill has rolled out the red carpet in style, hosting the world premiere of New Zealand's latest feature film.

Research Papers, Lincoln University

Queenstown and Christchurch are twin poles of New Zealand's landscape of risk. As the country's 'adventure capital', Queenstown is a spectacular landscape in which risk is a commodity. Christchurch's landscape is also risky, ruptured by earthquakes, tentatively rebuilding. As a far-flung group of tiny islands in a vast ocean, New Zealand is the poster-child of the sublime. Queenstown and Christchurch tell two different, yet complementary, stories about the sublime. Christchurch and Queenstown are vehicles for exploring the 21st-century sublime, for reflecting on its expansive influence on shaping cultural landscapes. Christchurch and Queenstown stretch and challenge the sublime's influence on the designed landscape. Circling the paradoxes of risk and safety, suffering and pleasure, the sublime feeds an infinite appetite for fear as entertainment, and at the same time calls for an empathetic caring for a broken landscape and its residents.

Images, Alexander Turnbull Library

Text reads 'Parking wardens resume work in Christchurch'. A parking warden peers anxiously at a huge tanker named 'Bill's Septic Tank Services' which is apparently parked illegally. The driver of the tanker, who holds the nozzle of a pump attached to the tank, says 'Your move!' suggesting the threat of a sewage spill if the warden insists on compliance. Context - 'After a lengthy grace period following the devastating February 22 quake, Parking wardens were yesterday on the hunt for parking infringers in the city's non-metered time-restricted zones, loading zones, bus/tour coach stops and taxi stands, and on the likes of broken yellow lines.' The resumption of work by the parking wardens does suggest a return to normal in Christchurch. (NZHerald 30 May 2011) Colour and black and white versions available Quantity: 2 digital cartoon(s).

Images, UC QuakeStudies

Heavy traffic at the corner of Moorhouse Avenue and Manchester Street as people attempt to leave the city centre shortly after the 22 February earthquake. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones ... As we got to Moorhouse Avenue, we found we had to quickly drive underneath [the Colombo Street overbridge]and carry on down to Brougham Street as the bridge was being closed at that moment. From Brougham, we headed back up towards Madras. The traffic lights were out and the intersection was chaos. Over the next couple of hours, we continued crawling through heavy traffic. Impressively, everyone was very orderly despite the feeling of panic and the continuing aftershocks. We chatted to others in other vehicles to exchange news and stopped to speak to a lady that had broken down following water in the engine after having driven hrough floods".

Audio, Radio New Zealand

Tax, water and housing concerns were all debated at length by Bill English and Jacinda Ardern in last night's TVNZ leaders debate. The debate came just an hour after shock 1 News Colmar Brunton poll put Labour out in front. There have been fires and explosions at a flood damaged chemical plant near Houston forcing the evacuation of people in nearby homes. A block of flats in Aro Street has been evacuated after a large slip has come down behind it. After heavy rains and flooding a Mumbai building has collapsed, killing at least 23 people. Biosecurity officials say they expect to decide by the end of the year whether they will need to order the destruction of dairy herds to wipe out a cow disease that's broken out in the South Island. It's been revealed that not a single one of New Zealand's 315 police buildings constructed before 2011 have had a full earthquake safety check. People who've bought houses in Canterbury since the September 2010 earthquake and are still battling with insurance companies over repairs, have been told that if they want to take the matter to court, today is their last chance. The Government has begun urgent talks with Australia over the Queensland's state government's "discriminatory" trade policy which takes effect today. Trade Minister Todd McClay joins us.

Research papers, The University of Auckland Library

Recent earthquakes have shown that liquefaction and associated ground deformations are major geotechnical hazards to civil engineering infrastructures, such as pipelines. In particular, sewer pipes have been damaged in many areas in Christchurch as a result of liquefaction-induced lateral spreading near waterways and ground oscillation induced by seismic shaking. In this paper, the addition of a flexible AM liner as a potential countermeasure to increase sewer pipe capacity was investigated. Physical testing through 4-point loading test was undertaken to characterise material properties and the response of both unlined pipe and its lined counterpart. Next, numerical models were created using SAP2000 and ABAQUS to analyse buried pipeline response to transverse permanent ground displacement and to quantify, over a range of pipe segment lengths and soil parameters, the effectiveness of the AM liner in increasing displacement capacity. The numerical results suggest that the addition of the AM liner increases the deformation capacity of the unlined sewer pipe by as much as 50 times. The results confirmed that AM liner is an effective countermeasure for sewer pipes in liquefied ground not only in terms of increased deformation capacity but also the fact that AM-Liner can prevent influx of sand and water through broken pipes, making sewer pipes with liner remaining serviceable even under severe liquefaction condition.

Images, Alexander Turnbull Library

Two huge wrestlers, one representing 'Port Hills fault' and the other 'Greendale fault' struggle together over a broken Christchurch. Another wrestler, representing 'Other faults' appears in the distance yelling 'Is it my turn yet?' Context - Christchurch has now had three major earthquakes and thousands of aftershocks. It now appears likely that the Christchurch quakes resulted from activity on a fault extending directly eastward from the Alpine fault that remained unknown until last year, says Roger Musson, a seismologist at the British Geological Survey in Edinburgh. The new fault first came to light last September (4th) when a stronger but less calamitous quake shook Darfield, 40 kilometres west of Christchurch. Musson says the latest quake (Feb 22, 2011) probably resulted from an eastward continuation of activity on the same fault. "It has probably not moved for tens of thousands of years, so lots of strain built up," says Musson. The third major quake happened on 13th June 2011. (New Scientist - February 22, 2011) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

As part of the Canterbury Earthquake Digital Archive, this thesis documents the effects of the earthquakes on the musical life of Christchurch. It concentrates, primarily, on the classical music scene. The thesis examines the difficulties experienced by musical organisations, individual musicians, and teachers as they sought to bring music to the broken city, together with the measures that were necessary in order to overcome those difficulties. It examines how those organisations have worked to re-establish themselves in their particular musical fields. It charts the progress made, to date, along the path to recovery and offers suggestions regarding precautionary measures which, if instituted, could reduce the after-effects of a future disaster. Recognising that not all of the difficulties encountered were directly related to the earthquakes, this thesis also examines the effects on music and musicians, of decision making associated with the recovery effort. The thesis also demonstrates how a destructive event can provide the inspiration for creativity. It recognises the importance of music in maintaining a sense of normality for people, whether they realise it or not, as well as its influences in providing emotional relief in times of stress. Hopefully, it may become a useful guide to which other cities that may be faced with some natural disaster, could refer.

Research Papers, Lincoln University

Please contact supervisor Lin Roberts at Lincoln University to request a copy of this dissertation to read.Cities around the world are becoming greener, with many striving to make their cities as green as possible. Christchurch was devastated by an Earthquake in 2011, which resulted in many fatalities. Though this impacted the city negatively, this sad event was used as an opportunity for the broken city to become a better one. The Christchurch City Council (CCC) ran an exercise called ‘Share an Idea’, which asked the public what they wanted the new city to look like. The main theme extrapolated by researchers was that people wanted the city to be greener. A draft plan was created by the CCC but was deemed not good enough and replaced by a new plan called the Blueprint Plan created by the government. Through the process of public consultation to the finalized plan and the implementation of the finalized plan, there were many changes made to the inclusion of nature into Central Christchurch’s urban regeneration. The aim of this research is to assess the role of nature in the urban regeneration of Christchurch, by evaluating the recovery process, and comparing the level of greenness the public wanted by looking at what they said in Share an Idea, and then seeing how that translated into the proposed plans, and then finally looking at what is being implemented.

Research papers, Victoria University of Wellington

The suburb of New Brighton in Christchurch Aotearoa was once a booming retail sector until the end of its exclusivity to Saturday shopping in 1980 and the aftermath of the devastating 2011 Christchurch earthquake. The suburb of New Brighton was hit particularly hard and fell into economic collapse, partly brought on by the nature of its economic structure. This implosion created an urban crisis where people and businesses abandoned the suburb and its once-booming commercial economy. As a result, New Brighton has been left with the residue of abandoned infrastructure and commercial propaganda such as billboards, ATM machines, commercial facades, and shopping trolleys that as abandoned fragments, no longer contribute to culture, society and the economy. This design-led research investigation proposes to repurpose the broken objects that were left behind. By strategically selecting objects that are symbols of the root cause of the economic devastation, the repurposed and re-contextualised fragments will seek to allegorically expose the city’s destructive economic narrative, while providing a renewed sense of place identity for the people. This design-led thesis investigation argues that the seemingly innocuous icons of commercial industry, such as billboards, ATM machines, commercial facades, and shopping trolleys, are intended to act as lures to encourage people to spend money; ultimately, these urban and architectural lures can contribute to economic devastation. The aim of this investigation is to repurpose abandoned fragments of capitalist infrastructure in ways that can help to unveil new possibilities for a disrupted community and enhance their awareness of what led to the urban disruption. The thesis proposes to achieve this research aim by exploring three principal research objectives: 1) to assimilate and re-contextualise disconnected urban fragments into new architectural interventions; 2) to anthropomorphise these new interventions so that they are recognisable as architectural ‘inhabitants’, the storytellers of the urban context; and 3) to curate these new architectural interventions in ways that enable a community-scale allegorical and didactic experience to be recognised.

Videos, UC QuakeStudies

A video of a presentation by Jane Murray and Stephen Timms during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Land Use Recovery Plan: How an impact assessment process engaged communities in recovery planning".The abstract for this presentation reads as follows: In response to the Canterbury earthquakes, the Minister for Canterbury Earthquake Recovery directed Environment Canterbury (Canterbury's regional council) to prepare a Land Use Recovery Plan that would provide a spatial planning framework for Greater Christchurch and aid recovery from the Canterbury earthquakes. The Land Use Recovery Plan sets a policy and planning framework necessary to rebuild existing communities and develop new communities. As part of preparing the plan, an integrated assessment was undertaken to address wellbeing and sustainability concerns. This ensured that social impacts of the plan were likely to achieve better outcomes for communities. The process enabled a wide range of community and sector stakeholders to provide input at the very early stages of drafting the document. The integrated assessment considered the treatment of major land use issues in the plan, e.g. overall distribution of activities across the city, integrated transport routes, housing typography, social housing, employment and urban design, all of which have a key impact on health and wellbeing. Representatives from the Canterbury Health in All Policies Partnership were involved in designing a three-part assessment process that would provide a framework for the Land Use Recovery Plan writers to assess and improve the plan in terms of wellbeing and sustainability concerns. The detail of these assessment stages, and the influence that they had on the draft plan, will be outlined in the presentation. In summary, the three stages involved: developing key wellbeing and sustainability concerns that could form a set of criteria, analysing the preliminary draft of the Land Use Recovery Plan against the criteria in a broad sector workshop, and analysing the content and recommendations of the Draft Plan. This demonstrates the importance of integrated assessment influencing the Land Use Recovery Plan that in turn influences other key planning documents such as the District Plan. This process enabled a very complex document with wide-ranging implications to be broken down, enabling many groups, individuals and organisations to have their say in the recovery process. There is also a range of important lessons for recovery that can be applied to other projects and actions in a disaster recovery situation.

Research Papers, Lincoln University

Today there is interest in building resilient communities. Identifying and managing the risks of natural hazards with communities who face compounding hazards is challenging. Alpine ski areas provide a unique context to study this challenging and complex process. The traditional approach taken to manage natural hazards is discipline-centric and focuses on common (e.g. high probability low consequence) natural hazards such as avalanches. While this thesis acknowledges that the common approach is rational, it argues that we can extend our communities of practice to include rare (e.g. low probability / high consequence) natural hazards such as earthquakes. The dynamically complex nature of these ‘rare’ hazards limits our understanding about them, but by seeking and using the lived experiences of people in mountain communities some knowledge can be gained to help improve our understanding of how to adapt. This study focuses on such an approach in the context of alpine ski areas prone to earthquakes as a first step toward identifying key policy opportunities for hazard mitigation in general. The contributions can be broken down into methodological, contextual, and theoretical pursuits, as well as opportunities for improving future research. A development mixed method triangulated approach was justified because the research problem (i.e. earthquakes in ski areas) has had little consideration. The context provided the opportunity to test the integration of methods while dealing with the challenges of research in a novel context. Advancement to fuzzy cognitive mapping was achieved through the use of unsupervised neural networks (Self-organizing Maps or Kohonen Maps). The framework applied in the multi-site case study required a synthesis of current approaches, advances to methods and a functional use of cultural theory. Different approaches to participatory policy development were reviewed to develop a research protocol that was accessible. Cultural theory was selected as a foundation for the thesis because of its’ preference for plural rationalities from five ways of organizing. Moreover, the study undertook a shift away from the dichotomy of ‘methodological individualism’ and ‘methodological collectivism’ and instead chose the dividual (i.e. social solidarities that consist of culural biases, behavioral strategies and social relations) as a consistent unit of analysis despite three different methodologies including: field studies, qualitative interviews, and fuzzy cognitive maps. In this sense, the thesis sought to move away from ‘elegant solutions’ from singular solidarities or methods toward a research philosophy that sustains requisite variety and clumsy solutions. Overall the approach was a trandisciplinary framework that is a step toward sustainable hazards mitigation. The results indicate that the selections of risks and adaptation strategies associated with the in-situ hazards are driven by roles that managers, workers, and riders play in the context. Additionally, fuzzy cognitive maps were used as an extension of qualitative interviews and demonstrated the potential for power struggles that may arise between participant groups when considering strategies for preparation, response and recovery. Moreover, the results stress that prolonged engagement with stakeholders is necessary to improve the policy development process. Some comments are made on the compatibility condition of congruence between cultural biases, behavioural strategies, and social relations. As well, inclusion of the hermit/autonomous solidarities is stressed as a necessary component of future applications of cultural theory. The transdisciplinary mixed-method framework is an approach that can be transferred to many other vital areas of research where integration is desirable.

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.

Research papers, The University of Auckland Library

The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.

Research papers, University of Canterbury Library

This project was initiated by ENGEO Limited and KiwiRail Holdings Limited to assess the stability of Slovens Creek Viaduct (specifically its western abutment) and a 3km section of rail corridor between Slovens Creek Viaduct and Avoca on the Midland Line (MDL). Commonly known as the scenic TranzAlpine rail journey (through Arthurs Pass National Park) the MDL connects Greymouth to Christchurch via Rolleston, where the MDL meets the Main South Line into Christchurch. The project area is approximately 40km southeast of Arthurs Pass Township, in the eastern extension of the Castle Hill Basin which is part of the Waimakariri Catchment and Canterbury Foothills. The field area is underlain by Rakaia Terrane, which is part of the Torlesse Composite Terrane forming the basement rock unit for the field area. Cretaceous-Tertiary rocks of the Castle Hill Basin overlie the basement strata and record a transgression-regression sequence, as well as mid-Oligocene submarine volcanism. The stratigraphic sequence in the Castle Hill Basin, and its eastern extension to Avoca, comprises two formations of the Eyre group, the older Broken River Formation and the younger Iron Creek Formation. Deep marine Porter Group limestones, marls, and tuffs of Oligocene age succeed the Iron Creek Formation of the Eyre Group, and probably records the maximum of the transgression. The Enys Formation lies disconformably on the Porter Group and is overlain unconformably by Late Pleistocene glacifluvial and glacial deposits. The Tertiary strata in the Slovens-Avoca rail corridor are weak, and the clay-rich tuff derived from mid-Oligocene volcanism is particularly prone to slaking. Extensive mapping carried out for this project has identified that some 90 percent of the surface along the length of the Slovens-Avoca corridor has been subject to mass movement. The landslides of the Slovens-Avoca rail corridor are clearly younger than the Last Glaciation, and Slovens Creek has been downcutting, with associated faulting and uplift, to form the present day geomorphology of the rail corridor. Deep-seated landslides in the rail corridor extend to Slovens Creek, locally deflecting the stream course, and a generic ground failure model for the rail corridor has been developed. Exploratory geotechnical investigations, including core drilling, installation of an inclinometer and a piezometer, enabled the construction of a simple ground model and cross section for the Slovens Creek Viaduct western abutment. Limit-equilibrium and pseudo-static slope stability analyses using both circular and block critical slip surface search methods were applied to the ground model for the western abutment of Slovens Creek Viaduct. Piezometric and strength data obtained during laboratory testing of core material have been used to constrain the western abutment stability assessment for one representative section line (C-C’). Prior to pseudo-static sensitivity analyses peak ground acceleration (PGA) for various Ultimate Limit State (ULS) design return periods, defined by an equation given in NZS1170.5:2004, were calculated and have been used as a calibration technique to find and compare specific PGA values for pseudo-static analyses in the Slovens Creek Viaduct area. The main purpose has been to provide an indication of how railway infrastructure could be affected by seismic events of various return periods defined by ULS design standards for the area. Limit equilibrium circular slip surface search methods, both grid search and auto refine search, indicated the slope is stable with a FoS greater than 1.0 returned from each, although one particular surface returned the lowest FoS in each. This surface is in the lower portion of the slope, adjacent to Slovens Stream and northeast of the MDL. As expected, pseudo-static analyses returned a lower FoS overall when compared to limit equilibrium analyses. The PGA analyses suggest that partial ground failure at the Slovens Creek Viaduct western abutment could occur in a 1 in 25-year return period event within materials on the slower slope beyond the immediate rail corridor. A ULS (1 in 500-year) event in the Slovens Creek Viaduct area would likely produce a PGA of ~0.9g, and the effects on the western abutment and rail infrastructure would most likely be catastrophic. Observed ground conditions for the western abutment of the Slovens Creek Viaduct suggest there is no movement within the landslide at depth within the monitoring timeframe of this project (22 May 2015 – 4 August 2015). Slope stability monitoring is recommended to be continued in two parts: (1) the inclinometer in BH1 is to be monitored on a six monthly basis for one year following completion of this thesis, and then annually unless ground movements become evident; and (2) surface movement monitoring should be installed using a fixed datum on the stable eastern abutment. Long-term stability management strategies for the Slovens Creek Viaduct western abutment are dependent upon future observed changes and ongoing monitoring. Hazard and risk assessment using the KiwiRail Qualitative Risk Assessment Framework (QRA) is recommended, and if slope stability becomes problematic for operation of the Midland Line consideration should be given to deep slope drainage. In the event of a large magnitude or high PGA earthquake all monitoring should be reviewed.

Research papers, University of Canterbury Library

Environmental stress and disturbance can affect the structure and functioning of marine ecosystems by altering their physical, chemical and biological features. In estuaries, benthic invertebrate communities play important roles in structuring sediments, influencing primary production and biogeochemical flux, and occupying key food web positions. Stress and disturbance can reduce species diversity, richness and abundance, with ecological theory predicting that biodiversity will be at its lowest soon after a disturbance with assemblages dominated by opportunistic species. The Avon-Heathcote Estuary in Christchurch New Zealand has provided a novel opportunity to examine the effects of stress, in the form of eutrophication, and disturbance, in the form of cataclysmic earthquake events, on the structure and functioning of an estuarine ecosystem. For more than 50 years, large quantities (up to 500,000m3/day) of treated wastewater were released into this estuary but in March 2010 this was diverted to an ocean outfall, thereby reducing the nutrient loading by around 90% to the estuary. This study was therefore initially focussed on the reversal of eutrophication and consequent effects on food web structure in the estuary as it responded to lower nutrients. In 2011, however, Christchurch was struck with a series of large earthquakes that greatly changed the estuary. Massive amounts of liquefied sediments, covering up to 65% of the estuary floor, were forced up from deep below the estuary, the estuary was tilted by up to a 50cm rise on one side and a corresponding drop on the other, and large quantities of raw sewage from broken wastewater infrastructure entered the estuary for up to nine months. This study was therefore a test of the potentially synergistic effects of nutrient reduction and earthquake disturbance on invertebrate communities, associated habitats and food web dynamics. Because there was considerable site-to-site heterogeneity in the estuary, the sites in this study were selected to represent a eutrophication gradient from relatively “clean” (where the influence of tidal flows was high) to highly impacted (near the historical discharge site). The study was structured around these sites, with components before the wastewater diversion, after the diversion but before the earthquakes, and after the earthquakes. The eutrophication gradient was reflected in the composition and isotopic chemistry of primary producer and invertebrate communities and the characteristics of sediments across the sample sites. Sites closest to the former wastewater discharge pipe were the most eutrophic and had cohesive organic -rich, fine sediments and relatively depauperate communities dominated by the opportunistic taxa Capitellidae. The less-impacted sites had coarser, sandier sediments with fewer pollutants and far less organic matter than at the eutrophic sites, relatively high diversity and lower abundances of micro- and macro-algae. Sewage-derived nitrogen had became incorporated into the estuarine food web at the eutrophic sites, starting at the base of the food chain with benthic microalgae (BMA), which were found to use mostly sediment-derived nitrogen. Stable isotopic analysis showed that δ13C and δ15N values of most food sources and consumers varied spatially, temporally and in relation to the diversion of wastewater, whereas the earthquakes did not appear to affect the overall estuarine food web structure. This was seen particularly at the most eutrophic site, where isotopic signatures became more similar to the cleaner sites over two-and-a-half years after the diversion. New sediments (liquefaction) produced by the earthquakes were found to be coarser, have lower concentrations of heavy metals and less organic matter than old (existing) sediments. They also had fewer macroinvertebrate inhabitants initially after the earthquakes but most areas recovered to pre-earthquake abundance and diversity within two years. Field experiments showed that there were higher amounts of primary production and lower amounts of nutrient efflux from new sediments at the eutrophic sites after the earthquakes. Primary production was highest in new sediments due to the increased photosynthetic efficiency of BMA resulting from the increased permeability of new sediments allowing increased light penetration, enhanced vertical migration of BMA and the enhanced transport of oxygen and nutrients. The reduced efflux of NH4-N in new sediments indicated that the capping of a large portion of eutrophic old sediments with new sediments had reduced the release of legacy nutrients (originating from the historical discharge) from the sediments to the overlying water. Laboratory experiments using an array of species and old and new sediments showed that invertebrates altered levels of primary production and nutrient flux but effects varied among species. The mud snail Amphibola crenata and mud crab Austrohelice crassa were found to reduce primary production and BMA biomass through the consumption of BMA (both species) and its burial from bioturbation and the construction of burrows (Austrohelice). In contrast, the cockle Austrovenus stutchburyi did not significantly affect primary production and BMA biomass. These results show that changes in the structure of invertebrate communities resulting from disturbances can also have consequences for the functioning of the system. The major conclusions of this study were that the wastewater diversion had a major effect on food web dynamics and that the large quantities of clean and unpolluted new sediments introduced to the estuary during the earthquakes altered the recovery trajectory of the estuary, accelerating it at least throughout the duration of this study. This was largely through the ‘capping’ effect of the new liquefied, coarser-grained sediments as they dissipated across the estuary and covered much of the old organic-rich eutrophic sediments. For all aspects of this study, the largest changes occurred at the most eutrophic sites; however, the surrounding habitats were important as they provided the context for recovery of the estuary, particularly because of the very strong influence of sediments, their biogeochemistry, microalgal and macroalgal dynamics. There have been few studies documenting system level responses to eutrophication amelioration and to the best on my knowledge there are no other published studies examining the impacts of large earthquakes on benthic communities in an estuarine ecosystem. This research gives valuable insight and advancements in the scientific understanding of the effects that eutrophication recovery and large-scale disturbances can have on the ecology of a soft-sediment ecosystem.