Search

found 789 results

Research papers, University of Canterbury Library

Geologic phenomena produced by earthquake shaking, including rockfalls and liquefaction features, provide important information on the intensity and spatiotemporal distribution of earthquake ground motions. The study of rockfall and liquefaction features produced in contemporary well- instrumented earthquakes increases our knowledge of how natural and anthropogenic environments respond to earthquakes and improves our ability to deduce seismologic information from analogous pre-contemporary (paleo-) geologic features. The study of contemporary and paleo- rockfall and liquefaction features enables improved forecasting of environmental responses to future earthquakes. In this thesis I utilize a combination of field and imagery-based mapping, trenching, stratigraphy, and numerical dating techniques to understand the nature and timing of rockfalls (and hillslope sedimentation) and liquefaction in the eastern South Island of New Zealand, and to examine the influence that anthropogenic activity has had on the geologic expressions of earthquake phenomena. At Rapaki (Banks Peninsula, NZ), field and imagery-based mapping, statistical analysis and numerical modeling was conducted on rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n=285) and compared with newly identified prehistoric (Holocene and Pleistocene) boulders (n=1049) deposited on the same hillslope. A significant population of modern boulders (n=26) travelled farther downslope (>150 m) than their most-travelled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using 3-dimensional rigid body numerical models requires the application of a drag-coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfalls. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Optical and radiocarbon dating of loessic hillslope sediments in New Zealand’s South Island is used to constrain the timing of prehistoric rockfalls and associated seismic events, and quantify spatial and temporal patterns of hillslope sedimentation including responses to seismic and anthropogenic forcing. Luminescence ages from loessic sediments constrain timing of boulder emplacement to between ~3.0 and ~12.5 ka, well before the arrival of Polynesians (ca AD 1280) and Europeans (ca AD 1800) in New Zealand, and suggest loess accumulation was continuing at the study site until 12-13 ka. Large (>5 m3) prehistoric rockfall boulders preserve an important record of Holocene hillslope sedimentation by creating local traps for sediment aggradation and upbuilding soil formation. Sediment accumulation rates increased considerably (>~10 factor increase) following human arrival and associated anthropogenic burning of hillslope vegetation. New numerical ages are presented to place the evolution of loess-mantled hillslopes in New Zealand’s South Island into a longer temporal framework and highlight the roles of earthquakes and humans on hillslope surface process. Extensive field mapping and characterization for 1733 individual prehistoric rockfall boulders was conducted at Rapaki and another Banks Peninsula site, Purau, to understand their origin, frequency, and spatial and volumetric distributions. Boulder characteristics and distributions were compared to 421 boulders deposited at the same sites during the 2010-2011 Canterbury earthquake sequence. Prehistoric boulders at Rapaki and Purau are comprised of two dominant lithofacies types: volcanic breccia and massive (coherent) lava basalt. Volcanic breccia boulders are found in greatest abundance (64-73% of total mapped rockfall) and volume (~90-96% of total rockfall) at both locations and exclusively comprise the largest boulders with the longest runout distances that pose the greatest hazard to life and property. This study highlights the primary influence that volcanic lithofacies architecture has on rockfall hazard. The influence of anthropogenic modifications on the surface and subsurface geologic expression of contemporary liquefaction created during the 2010-2011 Canterbury earthquake sequence (CES) in eastern Christchurch is examined. Trench observations indicate that anthropogenic fill layer boundaries and the composition/texture of discretely placed fill layers play an important role in absorbing fluidized sand/silt and controlling the subsurface architecture of preserved liquefaction features. Surface liquefaction morphologies (i.e. sand blows and linear sand blow arrays) display alignment with existing utility lines and utility excavations (and perforated pipes) provided conduits for liquefaction ejecta during the CES. No evidence of pre-CES liquefaction was identified within the anthropogenic fill layers or underlying native sediment. Radiocarbon dating of charcoal within the youngest native sediment suggests liquefaction has not occurred at the study site for at least the past 750-800 years. The importance of systematically examining the impact of buried infrastructure on channelizing and influencing surface and subsurface liquefaction morphologies is demonstrated. This thesis highlights the importance of using a multi-technique approach for understanding prehistoric and contemporary earthquake phenomena and emphasizes the critical role that humans play in shaping the geologic record and Earth’s surface processes.

Research papers, University of Canterbury Library

In September 2010 and February 2011, the Canterbury region experienced devastating earthquakes with an estimated economic cost of over NZ$40 billion (Parker and Steenkamp, 2012; Timar et al., 2014; Potter et al., 2015). The insurance market played an important role in rebuilding the Canterbury region after the earthquakes. Homeowners, insurance and reinsurance markets and New Zealand government agencies faced a difficult task to manage the rebuild process. From an empirical and theoretic research viewpoint, the Christchurch disaster calls for an assessment of how the insurance market deals with such disasters in the future. Previous studies have investigated market responses to losses in global catastrophes by focusing on the insurance supply-side. This study investigates both demand-side and supply-side insurance market responses to the Christchurch earthquakes. Despite the fact that New Zealand is prone to seismic activities, there are scant previous studies in the area of earthquake insurance. This study does offer a unique opportunity to examine and document the New Zealand insurance market response to catastrophe risk, providing results critical for understanding market responses after major loss events in general. A review of previous studies shows higher premiums suppress demand, but how higher premiums and a higher probability of risk affect demand is still largely unknown. According to previous studies, the supply of disaster coverage is curtailed unless the market is subsidised, however, there is still unsettled discussion on why demand decreases with time from the previous disaster even when the supply of coverage is subsidised by the government. Natural disaster risks pose a set of challenges for insurance market players because of substantial ambiguity associated with the probability of such events occurring and high spatial correlation of catastrophe losses. Private insurance market inefficiencies due to high premiums and spatially concentrated risks calls for government intervention in the provision of natural disaster insurance to avert situations of noninsurance and underinsurance. Political economy considerations make it more likely for government support to be called for if many people are uninsured than if few people are uninsured. However, emergency assistance for property owners after catastrophe events can encourage most property owners to not buy insurance against natural disaster and develop adverse selection behaviour, generating larger future risks for homeowners and governments. On the demand-side, this study has developed an intertemporal model to examine how demand for insurance changes post-catastrophe, and how to model it theoretically. In this intertemporal model, insurance can be sought in two sequential periods of time, and at the second period, it is known whether or not a loss event happened in period one. The results show that period one demand for insurance increases relative to the standard single period model when the second period is taken into consideration, period two insurance demand is higher post-loss, higher than both the period one demand and the period two demand without a period one loss. To investigate policyholders experience from the demand-side perspective, a total of 1600 survey questionnaires were administered, and responses from 254 participants received representing a 16 percent response rate. Survey data was gathered from four institutions in Canterbury and is probably not representative of the entire population. The results of the survey show that the change from full replacement value policy to nominated replacement value policy is a key determinant of the direction of change in the level of insurance coverage after the earthquakes. The earthquakes also highlighted the plight of those who were underinsured, prompting policyholders to update their insurance coverage to reflect the estimated cost of re-building their property. The survey has added further evidence to the existing literature, such as those who have had a recent experience with disaster loss report increased risk perception if a similar event happens in future with females reporting a higher risk perception than males. Of the demographic variables, only gender has a relationship with changes in household cover. On the supply-side, this study has built a risk-based pricing model suitable to generate a competitive premium rate for natural disaster insurance cover. Using illustrative data from the Christchurch Red-zone suburbs, the model generates competitive premium rates for catastrophe risk. When the proposed model incorporates the new RMS high-definition New Zealand Earthquake Model, for example, insurers can find the model useful to identify losses at a granular level so as to calculate the competitive premium. This study observes that the key to the success of the New Zealand dual insurance system despite the high prevalence of catastrophe losses are; firstly the EQC’s flat-rate pricing structure keeps private insurance premiums affordable and very high nationwide homeowner take-up rates of natural disaster insurance. Secondly, private insurers and the EQC have an elaborate reinsurance arrangement in place. By efficiently transferring risk to the reinsurer, the cost of writing primary insurance is considerably reduced ultimately expanding primary insurance capacity and supply of insurance coverage.

Audio, Radio New Zealand

Questions to Ministers 1. DAVID SHEARER to the Prime Minister: Does he stand by his statement in the House yesterday, in answer to Oral Question No 2, that his Government is selling assets because "New Zealanders want less debt, more productive assets, and an economy that is going to function, not a load more debt"? 2. PAUL GOLDSMITH to the Minister for Economic Development: What progress is the Government making in implementing its economic growth agenda? 3. PHIL TWYFORD to the Minister of Transport: Does the Government consider it important for its transport spending to be cost-effective and provide a good return on investment? 4. Dr RUSSEL NORMAN to the Minister for State Owned Enterprises: What, according to the Crown Ownership Monitoring Unit, was the average total shareholder return of Genesis, Meridian, Mighty River Power and Solid Energy over the last five years and how does that compare to the average cost of borrowing to the Government right now? 5. NICKY WAGNER to the Minister of Local Government: What reports has he received on how much rates increased nationally in the decade since the Local Government Act 2002 and how does this compare to the previous decade? 6. GRANT ROBERTSON to the Minister for the Environment: Does he stand by his statement made in the House yesterday in relation to the grounding of the Rena that "the statute sets down very clearly that I as Minister for the Environment should not be encouraging or discouraging a proper, independent decision by Environment Bay of Plenty as to whether they should or should not take a prosecution"? 7. KANWALJIT SINGH BAKSHI to the Minister of Broadcasting: What recent announcements has the Government made on progress towards digital switchover? 8. Rt Hon WINSTON PETERS to the Prime Minister: Does he still have confidence in all his Ministers? 9. Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: How many written comments were received on the draft Recovery Plan for the Christchurch CBD and is it his intention to consider them all before making a decision on the draft Recovery Plan for the CBD, in accordance with the process set out on the Canterbury Earthquake Recovery Authority's website? 10. MELISSA LEE to the Minister of Internal Affairs: What recent steps have there been to promote New Zealand citizenship as a successful settlement pathway for migrants? 11. CLARE CURRAN to the Minister of Broadcasting: Does he stand by the Prime Minister's statement in relation to the appointment of the Prime Minister's electorate chairman Stephen McElrea to the NZ On Air board that "if you look at the vast array of appointments we make, I think the balance is about right"? 12. CATHERINE DELAHUNTY to the Minister of Education: Will she rule out implementing Treasury's advice to increase class sizes in schools?

Research papers, The University of Auckland Library

Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091

Research papers, University of Canterbury Library

This thesis addresses the topic of local bond behaviour in RC structures. The mechanism of bond refers to the composite action between deformed steel reinforcing bars and the surrounding concrete. Bond behaviour is an open research topic with a wide scope, particularly because bond it is such a fundamental concept to structural engineers. However, despite many bond-related research findings having wide applications, the primary contribution of this research is an experimental evaluation of the prominent features of local bond behaviour and the associated implications for the seismic performance of RC structures. The findings presented in this thesis attempt to address some structural engineering recommendations made by the Canterbury Earthquakes Royal Commission following the 2010-2011 Canterbury (New Zealand) earthquake sequence. A chapter of this thesis discusses the structural behaviour of flexure-dominated RC wall structures with an insufficient quantity of longitudinal reinforcement, among other in situ conditions, that causes material damage to predominantly occur at a single crack plane. In this particular case, the extent of concrete damage and bond deterioration adjacent to the crack plane will influence the ductility capacity that is effectively provided by the reinforcing steel. As a consequence of these in situ conditions, some lightly reinforced wall buildings in Christchurch lost their structural integrity due to brittle fracture of the longitudinal reinforcement. With these concerning post-earthquake observations in mind, there is the underlying intention that this thesis presents experimental evidence of bond behaviour that allows structural engineers to re-assess their confidence levels for the ability of lightly reinforced concrete structures to achieve the life-safety seismic performance objective the ultimate limit state. Three chapters of this thesis are devoted to the experimental work that was conducted as the main contribution of this research. Critical details of the experimental design, bond testing method and test programme are reported. The bond stress-slip relationship was studied through 75 bond pull-out tests. In order to measure the maximum local bond strength, all bond tests were carried out on deformed reinforcing bars that did not yield as the embedded bond length was relatively short. Bond test results have been presented in two separate chapters in which 48 monotonic bond tests and 27 cyclic bond tests are presented. Permutations of the experiments include the loading rate, cyclic loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and position of the embedded bond region within the specimen (close or far away to the free surface). The parametric study showed that the concrete strength significantly influences the maximum bond strength and that it is reasonable to normalise the bond stress by the square-root of the concrete compressive strength, √(f'c). The generalised monotonic bond behaviour is described within. An important outcome of the research is that the measured bond strength and stiffness was higher than stated by the bond stress-slip relationship in the fib Model Code 2010. To account for these observed differences, an alternative model is proposed for the local monotonic bond stress-slip relationship. Cyclic bond tests showed a significant proportion of the total bond degradation occurs after the loading cycle in the peak bond strength range, which is when bond slip has exceeded 0.5 mm. Subsequent loading to constant slip values showed a linear relationship between the amount of bond strength degradation and the log of the number of cycles that were applied. To a greater extent, the cyclic bond deterioration depends on the bond slip range, regardless of whether the applied load cycling is half- or fully-reversed. The observed bond deterioration and hysteretic energy dissipated during cyclic loading was found to agree reasonably well between these cyclic tests with different loading protocols. The cyclic bond deterioration was also found to be reasonably consistent exponential damage models found in the literature. This research concluded that the deformed reinforcing bars used in NZ construction, embedded in moderate to high strength concrete, are able to develop high local bond stresses that are mobilised by a small amount of local bond slip. Although the relative rib geometry was not varied within this experimental programme, a general conclusion of this thesis is that deformed bars currently available in NZ have a relative rib bearing area that is comparatively higher than the test bars used in previous international research. From the parametric study it was found that the maximum monotonic bond strength is significant enhanced by dynamic loading rates. Experimental evidence of high bond strength and initial bond stiffness generally suggests that only a small amount of local bond slip that can occur when the deformed test bar was subjected to large tension forces. Minimal bond slip and bond damage limits the effective yielding length that is available for the reinforcing steel to distribute inelastic material strains. Consequently, the potential for brittle fracture of the reinforcement may be a more problematic and widespread issue than is apparent to structural engineers. This research has provided information that improve the reliability of engineering predictions (with respect to ductility capacity) of maximum crack widths and the extent of bond deterioration that might occur in RC structures during seismic actions.

Images, Alexander Turnbull Library

The cartoon depicts the Minister of Earthquakes Gerry Brownlee, with a portaloo in place of a head. He holds in his hand a document which reads 'Govt appointed quake panel (Shipley etc) paid twice normal fees: $1000 - 1400 daily'. A voice from inside the toilet says 'It's because they're high calibre people!' Context: Earthquake Recovery Minister Gerry Brownlee lobbied his colleagues to pay a Government-appointed panel more than twice the recommended rate because he claimed they would not do it for less - even though he never asked them. On Mr Brownlee's advice, the Cabinet more than doubled the pay rates for the panel from the recommended fees, which was a daily rate of $360 to $655 for the panel chairman and $270 to $415 for panel members. The Cabinet increased this to $1400 a day for the chairman and $1000 a day for the other members. (NZ Herald, 9 August 2011) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

In the last two decades, New Zealand (NZ) has experienced significant earthquakes, including the 2010 M 7.2 Darfield, 2011 M 6.2 Christchurch, and 2016 M 7.8 Kaikōura events. Amongst these large events, tens of thousands of smaller earthquakes have occurred. While previous event and ground-motion databases have analyzed these events, many events below M 4 have gone undetected. The goal of this study is to expand on previous databases, particularly for small magnitude (M<4) and low-amplitude ground motions. This new database enables a greater understanding of regional variations within NZ and contributes to the validity of internationally developed ground-motion models. The database includes event locations and magnitude estimates with uncertainty considerations, and tectonic type assessed in a hierarchical manner. Ground motions are extracted from the GeoNet FDSN server and assessed for quality using a neural network classification approach. A deep neural network approach is also utilized for picking P and S phases for determination of event hypocentres. Relative hypocentres are further improved by double-difference relocation and will contribute toward developing shallow (< 50 km) seismic tomography models. Analysis of the resulting database is compared with previous studies for discussion of implications toward national hazard prediction models.

Research papers, The University of Auckland Library

Between September 4, 2010 and December 23, 2011, a series of earthquakes struck the South Island of New Zealand including the city of Christchurch producing heavy damage. During the strongest shaking, the unreinforced masonry (URM) building stock in Christchurch was subjected to seismic loading equal to approximately 150-200% of code values. Post-earthquake reconnaissance suggested numerous failures of adhesive anchors used for retrofit connection of roof and floor diaphragms to masonry walls. A team of researchers from the Universities of Auckland (NZ) and Minnesota (USA) conducted a field investigation on the performance of new adhesive anchors installed in existing masonry walls. Variables included adhesive type, anchor diameter, embedment length, anchor inclination, and masonry quality. Buildings were selected that had been slated for demolition but which featured exterior walls that had not been damaged. A summary of the deformation response measured during the field tests are presented. AM - Accepted Manuscript

Images, Alexander Turnbull Library

A plane flies into the distance. Attached to it by a rope is a large package containing Christchurch Mayor Bob Parker and CEO of the City Council Tony Marryatt. The package is addressed 'Deepest Siberia c/- isolated hellhole Russia'. The mayor looks on the bright side considering this to be a junket the people will approve of. Context: Public disapproval of the Mayor's two-week tour of Asian countries with a Christchurch International Airport-led delegation. The airport is paying for the mayoral couple to take part in the trip. There is public criticism that the trip take place at this time because of ongoing problems with the council and earthquake recovery. There is also criticism of Tony Marryatt's $68,000 pay increase considered poor form when so many people are struggling with earthquake related problems. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Shows Minister for Christchurch Earthquake Recovery Gerry Brownlee delighted with his plan to rebuild Christchurch and to have it paid for buy the PM's casino. Context: Refers to the Christchurch Central Development Unit that Minister for Christchurch Earthquake Recovery Gerry Brownlee has put in place. Refers also to the very controversial deal that Prime Minister John Key has made with Auckland's SkyCity to the effect that SkyCity will pay the full construction cost of a new convention centre - estimated at $350 million, in return for being allowed to add more gaming tables and machines, and extending its licence beyond 2021. Colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).

Research papers, University of Canterbury Library

This paper concerns the explicit consideration of near-fault directivity in conventional ground motion prediction models, and its implication for probabilistic seismic hazard analysis (PSHA) in New Zealand. The proposed approach utilises recently developed models by Shahi & Baker (2011), which account for both the 'narrowband' nature of the directivity pulse on spectral ordinates, and the probability of pulse occurrence at the site of interest. Furthermore, in order to correctly consider directivity, distributed seismicity sources are considered as finite-faults, as opposed to their (incorrect) conventional treatment as point-sources. The significance of directivity on hazard analysis results is illustrated for various vibration periods at generic sites located in Christchurch and Otira, two locations whose seismic hazard is comprised of notably different seismic sources. When compared to the PSHA results considering directivity and distributed seismicity as finite faults, it is shown that the NZS1170.5:2004 directivity factor is notably unconservative for all vibration periods in Otira (i.e. high seismic hazard region); and unconservative for Christchurch at short-to-moderate vibration periods ( < 3s); but conservative at long periods ( > 4s).

Images, Alexander Turnbull Library

Text reads 'Bad news for Christchurch playing fields'. On the left is a man wearing the Canterbury colours and carrying a flag; he looks most upset about the 'AMI Stadium' being red stickered. On the right is a woman of the night in fishnet stockings and a very short skirt who looks very upset as she hears that 'Manchester Street' has been red stickered. The little Evans man in the corner says 'Red light, red carded, from the red zone'. Context - The AMI Stadium was supposed to be the venue for the Rugby World Cup in Christchurch - a decision made on 16 March was made that Christchurch was not in a position to host the RWC. With Manchester St on the city side of Bealey Ave cordoned off, street workers have been working from the residential area between Bealey and Purchas St. and residents are furious. Colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).

Research papers, University of Canterbury Library

On 15 August 1868, a great earthquake struck off the coast of the Chile-Peru border generating a tsunami that travelled across the Pacific. Wharekauri-Rekohu-Chatham Islands, located 800 km east of Christchurch, Aotearoa-New Zealand (A-NZ) was one of the worst affected locations in A-NZ. Tsunami waves, including three over 6 metres high, injured and killed people, destroyed buildings and infrastructure, and impacted the environment, economy and communities. While experience of disasters, and advancements in disaster risk reduction systems and technology have all significantly advanced A-NZ’s capacity to be ready for and respond to future earthquakes and tsunami, social memory of this event and other tsunamis during our history has diminished. In 2018, a team of scientists, emergency managers and communication specialists collaborated to organise a memorial event on the Chatham Islands and co-ordinate a multi-agency media campaign to commemorate the 150th anniversary of the 1868 Arica tsunami. The purpose was to raise awareness of the disaster and to encourage preparedness for future tsunami. Press releases and science stories were distributed widely by different media outlets and many attended the memorial event indicating public interest for commemorating historical disasters. We highlight the importance of commemorating disaster anniversaries through memorial events, to raise awareness of historical disasters and increase community preparedness for future events – “lest we forget and let us learn.”

Images, Alexander Turnbull Library

In six small cameos Prime Minister John Key ponders over things economic and ends up dancing; he says 'I'm bereft of ideas for the economy gambling the lives of our troops in the Afghanistan mess I'm presiding over the biggest budget deficit in our history borrowing $300m a week to cushion our slide into oblivion Using lots of World Cup piffle to distract from the real issues Yet I'm still rating miles higher than Goff so how hopeless is he??? A little man in the last frame comments 'Spoiled for choice eh?' Context - New Zealand's rather dire economic situation made so much worse by the Christchurch earthquakes of 4 September 2010 and 22 February 2011, the consistently high poll rating of John Key and the series of disasters suffered by the Labour Party in the run up to the 2011 election in November. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

War and natural disasters share many features including great loss of life, traumatised populations and haunting memories. The Christchurch earthquakes were the third most costly event of 2011 with total costs of up to $NZ30 billion. Many homes, communities, families and an established way of life have gone for ever. The paper comes from the Women’s Voices project that documents women’s narratives of earthquake trauma and loss and examines their profiles of emotional expression associated with coping. For these women in Christchurch, solace is not about talking experiences of suffering but by doing practical things that inform and are shaped by existing personal narratives. As they relayed this common arc, they also entered into national (and gendered) narrative themes of being practical, stoic, independent and resourceful in the face of tragedy and loss and so embody communal aspects of coping with loss and grief particular to the New Zealand even ‘the South Island settler’ identity narrative. These narratives suggest it useful to rethink key concepts that inform our understanding of coping with disaster and loss.

Research papers, Lincoln University

The city of Ōtautahi/Christchurch experienced a series of earthquakes that began on September 4th, 2010. The most damaging event occurred on February 22nd, 2011 but significant earthquakes also occurred on June 13th and December 23rd with aftershocks still occurring well into 2012. The resulting disaster is the second deadliest natural disaster in New Zealand’s history with 185 deaths. During 2011 the Canterbury earthquakes were one of the costliest disasters worldwide with an expected cost of up to $NZ30 billion. Hundreds of commercial buildings and thousands of houses have been destroyed or are to be demolished and extensive repairs are needed for infrastructure to over 100,000 homes. As many as 8,900 people simply abandoned their homes and left the city in the first few months after the February event (Newell, 2012), and as many as 50,000 may leave during 2012. In particular, young whānau and single young women comprised a disproportionate number of these migrants, with evidence of a general movement to the North Island. Te Puni Kōkiri sought a mix of quantitative and qualitative research to examine the social and economic impacts of the Christchurch earthquakes on Māori and their whānau. The result of this work will be a collection of evidence to inform policy to support and assist Māori and their whānau during the recovery/rebuild phases. To that end, this report triangulates available statistical and geographical information with qualitative data gathered over 2010 and 2011 by a series of interviews conducted with Māori who experienced the dramatic events associated with the earthquakes. A Māori research team at Lincoln University was commissioned to undertake the research as they were already engaged in transdisciplinary research (began in the May 2010), that focused on quickly gathering data from a range of Māori who experienced the disaster, including relevant economic, environmental, social and cultural factors in the response and recovery of Māori to these events. Participants for the qualitative research were drawn from Māori whānau who both stayed and left the city. Further data was available from ongoing projects and networks that the Lincoln research team was already involved in, including interviews with Māori first responders and managers operating in the CBD on the day of the February event. Some limited data is also available from younger members of affected whānau. Māori in Ōtautahi/Christchurch City have exhibited their own culturally-attuned collective responses to the disaster. However, it is difficult to ascertain Māori demographic changes due to a lack of robust statistical frameworks but Māori outward migration from the city is estimated to range between 560 and 1,100 people. The mobility displayed by Māori demonstrates an important but unquantified response by whānau to this disaster, with emigration to Australia presenting an attractive option for young Māori, an entrenched phenomenon that correlates to cyclical downturns and the long-term decline of the New Zealand economy. It is estimated that at least 315 Māori have emigrated from the Canterbury region to Australia post-quake, although the disaster itself may be only one of a series of events that has prompted such a decision. Māori children made up more than one in four of the net loss of children aged 6 to 15 years enrolled in schools in Greater Christchurch over the year to June 2011. Research literature identifies depression affecting a small but significant number of children one to two years post-disaster and points to increasing clinical and organisational demands for Māori and other residents of the city. For those residents in the eastern or coastal suburbs – home to many of the city’s Māori population - severe damage to housing, schools, shops, infrastructure, and streets has meant disruption to their lives, children’s schooling, employment, and community functioning. Ongoing abandonment of homes by many has meant a growing sense of unease and loss of security, exacerbated by arson, burglaries, increased drinking, a stalled local and national economy, and general confusion about the city’s future. Māori cultural resilience has enabled a considerable network of people, institutions, and resources being available to Māori , most noticeably through marae and their integral roles of housing, as a coordinating hub, and their arguing for the wider affected communities of Christchurch. Relevant disaster responses need to be discussed within whānau, kōhanga, kura, businesses, communities, and wider neighbourhoods. Comprehensive disaster management plans need to be drafted for all iwi in collaboration with central government, regional, and city or town councils. Overall, Māori are remarkably philosophical about the effects of the disaster, with many proudly relishing their roles in what is clearly a historic event of great significance to the city and country. Most believe that ‘being Māori’ has helped cope with the disaster, although for some this draws on a collective history of poverty and marginalisation, features that contribute to the vulnerability of Māori to such events. While the recovery and rebuild phases offer considerable options for Māori and iwi, with Ngāi Tahu set to play an important stakeholder in infrastructural, residential, and commercial developments, some risk and considerable unknowns are evident. Considerable numbers of Māori may migrate into the Canterbury region for employment in the rebuild, and trades training strategies have already been established. With many iwi now increasingly investing in property, the risks from significant earthquakes are now more transparent, not least to insurers and the reinsurance sector. Iwi authorities need to be appraised of insurance issues and ensure sufficient coverage exists and investments and developments are undertaken with a clear understanding of the risks from natural hazards and exposure to future disasters.

Research papers, University of Canterbury Library

In recent years, rocking isolation has become an effective approach to improve seismic performance of steel and reinforced concrete structures. These systems can mitigate structural damage through rigid body displacement and thus relatively low requirements for structural ductility, which can significantly improve seismic resilience of structures and reduce repairing costs after strong earthquakes. A number of base rocking structural systems with only a single rocking interface have been proposed. However, these systems can have significant high mode effect for high rise structures due to the single rocking interface. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. A number of structural configurations will be tested [1, 2], and non-structural elements including ceilings, infilling walls, glazed curtain walls, precast concrete panels, piping system will also be tested in this project [3]. Within this study, a multiple rocking column steel structural system was proposed and investigated mainly by Tongji team with assistance of NZ members. The concept of rocking column system initiates from the structure of Chinese ancient wooden pagoda. In some of Chinese wooden pagodas, there are continuous core columns hanged only at the top of each pagoda, which is not connected to each stories. This core column can effectively avoid collapse of the whole structure under large storey drifts. Likewise, there are also central continuous columns in the newly proposed steel rocking column system, which can avoid weak story failure mechanism and make story drifts more uniform. In the proposed rocking column system, the structure can switch between an elastic rigidly connected moment resisting frame and a controlled rocking column system when subjected to strong ground motion excitations. The main seismic energy can be dissipated by asymmetric friction beam–column connections, thereby effectively reducing residual displacement of the structure under seismic loading without causing excessive damage to structural members. Re–centering of the structure is provided not only by gravity load carried by rocking columns, but also by mould coil springs. To investigate dynamic properties of the proposed system under different levels of ground excitations, a full-scale threestory steel rocking column structural system with central continuous columns is to be tested using the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China and an analytical model is established. A finite element model is also developed using ABAQUS to simulate the structural dynamic responses. The rocking column system proposed in this paper is shown to produce resilient design with quick repair or replacement.

Research papers, University of Canterbury Library

INTRODUCTION: Connections between environmental factors and mental health issues have been postulated in many different countries around the world. Previously undertaken research has shown many possible connections between these fields, especially in relation to air quality and extreme weather events. However, research on this subject is lacking in New Zealand, which is difficult to analyse as an overall nation due to its many micro-climates and regional differences.OBJECTIVES: The aim of this study and subsequent analysis is to explore the associations between environmental factors and poor mental health outcomes in New Zealand by region and predict the number of people with mental health-related illnesses corresponding to the environmental influence.METHODS: Data are collected from various public-available sources, e.g., Stats NZ and Coronial services of New Zealand, which comprised four environmental factors of our interest and two mental health indicators data ranging from 2016 up until 2020. The four environmental factors are air pollution, earthquakes, rainfall and temperature. Two mental health indicators include the number of people seen by District Health Boards (DHBs) for mental health reasons and the statistics on suicide deaths. The initial analysis is carried out on which regions were most affected by the chosen environmental factors. Further analysis using Auto-Regressive Integrated Moving Average(ARIMA) creates a model based on time series of environmental data to generate estimation for the next two years and mental health projected from the ridge regression.RESULTS: In our initial analysis, the environmental data was graphed along with mental health outcomes in regional charts to identify possible associations. Different regions of New Zealand demonstrate quite different relationships between the environmental data and mental health outcomes. The result of later analysis predicts that the suicide rate and DHB mental health visits may increase in Wellington, drop-in Hawke's Bay and slightly increase in Canterbury for the year 2021 and 2022 with different environmental factors considered.CONCLUSION: It is evident that the relationship between environmental and mental health factors is regional and not national due to the many micro-climates that exist around the nation. However, it was observed that not all factors displayed a good relationship between the regions. We conclude that our hypotheses were partially correct, in that increased air pollution was found to correlate to increased mental health-related DHB visits. Rainfall was also highly correlated to some mental health outcomes. Higher levels of rainfall reduced DHB visits and suicide rates in some areas of the country.

Research papers, University of Canterbury Library

To this extent, modern buildings generally demonstrated good resistance to collapse during the recent earthquakes in New Zealand. However, damage to non-structural elements (NSE) has been persistent during these events. NSEs include secondary systems or components attached to the floors, roofs, and walls of a building or industrial facility that are not explicitly designed to participate in the main vertical or lateral load-bearing mechanism of the structure. They play a major role in the operational and functional aspects of buildings and contribute a major portion of the building’s overall cost. Therefore, they are expected to accommodate the effects of seismic actions such as drifts and accelerations. Typical examples of NSEs include internal non-loadbearing partitions, suspended ceilings, sprinkler piping systems, architectural claddings, building contents, mechanical/electrical equipment, and furnishings. The main focus of this thesis is the drift sensitive NSEs: precast concrete cladding panels and internal partition walls. Even though most precast concrete cladding panels performed well from a life-safety point of view during recent earthquakes in NZ, some collapsed panels posed a significant threat to life safety. It is, therefore, important that the design and detailing of the panel-to-structure connections ensure that their strength and displacement capacity are adequate to meet the corresponding seismic demands, at least during design level earthquakes. In contrast, the partition wall is likely to get damaged and lose serviceability at a low inter-story drift unless designed to accommodate the relative deformations between them and the structure. Partition walls suffered wide-ranging damage such as screw failures, diagonal cracking, detachments to the gypsum linings, and anchorage failures during the 2011 Canterbury Earthquake Sequence in NZ. Therefore, the thesis is divided into two parts. Part I of the thesis focuses on developing novel low-damage precast concrete cladding panel connections, i.e. “rocking” connection details comprising vertically slotted steel embeds and weld plates. The low-damage seismic performance of novel “rocking” connection details is verified through experimental tests comprising uni-directional, bi-directional, and multi-storey scaled quasi-static cyclic tests. Comparison with the seismic performance of traditional panel connections reported in the literature demonstrated the system’s significantly improved seismic resilience. Furthermore, the finite element models of panel connections and sealants are developed in ABAQUS. The force-drift responses of the “rocking” panel system modelled in SAP2000 is compared with the experimental results to evaluate their accuracy and validity. Part II of the thesis focuses on a) understanding the seismic performance of traditional rigid timber-framed partition wall, b) development and verification of low-damage connections (i.e. “rocking” connection details comprising of dual-slot tracks), and c) seismic evaluation of partition walls with a novel “bracketed and slotted” connections (comprising of innovative fastener and plastic bracket named Flexibracket) under uni-directional and bidirectional quasi-static cyclic loadings. Moreover, parametric investigation of the partition walls was conducted through several experimental tests to understand better the pros and cons of the rocking connection details. The experimental results have confirmed that the implementation of the proposed low damage solutions of precast cladding panels and internal partition walls can significantly reduce their damage in a building.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i

Images, Alexander Turnbull Library

The title is 'Gambling on the rise in Christchurch'. Several vignettes show two men running in the 'Porta-loo stakes (runs)'; people betting on the 'size of the next shake'; people betting on 'who will have the last chimney standing'; a man sitting over a pot on a little gas ring wondering 'How long will it take to boil a 3 minute egg... when it's minus 10 in the kitchen'; someone in a car wondering 'Whose street can wipe out the most engine sumps'; and someone wondering 'Which power company will be first to put people before profits'. Context: The way of things following the earthquakes of September 4 2010, 22 February 2011 and 13 June 2011. The Problem Gambling Foundation says it is concerned more Christchurch people are turning to gambling to combat stress from earthquakes. It says spending on pokie machines in Christchurch has risen by almost $4 million, going against a downward national trend. The foundation says the data released by the Department of Internal Affairs shows spending on gaming machines rose by more than $3,800,000 in Christchurch city to almost $23 million. (Radio NZ News 26 July 2011) Colour and black and white versions available Quantity: 2 digital cartoon(s).

Images, Alexander Turnbull Library

Text reads 'Pet of the day... ' Below is a notice tacked to a wall which has an image of a cat wearing spectacles on it. Text reads 'LOST. Large moggy, last seen roaming in Christchurch. Answers to the name of "Gerry" or "Dinners ready". Has a loud purr, looks cuddly but can turn...' Context: This is a reference to Gerry Brownlee, the Minister for Earthquake Recovery. When National announced its offer based on the 2007 rating valuation to red-zone property owners on 23 June, Gerry Brownlee specifically told people who had made improvements between the time of the valuation and the September quake to 'keep their receipts'. The offer from CERA dated August 19 now says quite clearly that people can only seek an adjustment to the purchase price if the rating valuation is based on an incorrect floor area, or if 'you have received a code compliance certificate for consented building work undertaken after the rating valuation and that work increased the floor area of your house'. (Voxy - 23 August 2011) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Low Damage Seismic Design (LDSD) guidance material being developed by Engineering NZ is considering a design drift limit for multi-storey buildings of 0.5% at a new damage control limit state (DCLS). The impact of this new design requirement on the expected annual loss due to repair costs is investigated for a four-storey office building with reinforced concrete walls located in Christchurch. The LDSD guidance material aims to reduce the expected annual loss of complying buildings to below 0.1% of building replacement cost. The research tested this expectation. Losses were estimated in accordance with FEMA P58, using building responses from non-linear time history analyses (performed with OpenSees using lumped plasticity models). The equivalent static method, in line with NZS 1170.5 and NZS 3101, was used to design the building to LDSD specifications, representing a future state-of-practice design. The building designed to low-damage specification returned an expected annual loss of 0.10%, and the building designed conventionally returned an expected annual loss of 0.13%. Limitations with the NZS 3101 method for determining wall stiffness were identified, and a different method acknowledging the relationship between strength and stiffness was used to redesign the building. Along with improving this design assumption, the study finds that LDSD design criteria could be an effective way of limiting damage and losses.

Images, Alexander Turnbull Library

Text at the top of the cartoon reads 'News - A "Moon man non-event lunch" will be held above Christchurch to defy quake predictions for that day'. In tea rooms on hills above Christchurch a group of people enjoy lunch as they defy precaution against a predicted earthquake. They order a 'pot o' tea', 'pie & chips', 'sandwich & coke' and a 'shake & roll'; above in a black and thunderous cloud God thinks he heard someone request a shake & a roll'. Context - After the two big earthquakes in Christchurch on 4 September 2010 and 22 February 2011, the so-called Moon Man Ken Ring is backing away from his prediction that Christchurch will be whacked by a huge earthquake today (20 March 2011). His claims have terrified Cantabrians and led to people fleeing Christchurch. M.P. Nick Smith and the Skeptics Society are planning a lunch in one of Christchurch's highest, oldest, stone buildings - on the day that "moon man" Ken Ring says the city will be hit by another devastating earthquake ; the lunch will be held at noon on March 20 at the Sign of the Kiwi, on the top of the Port Hills - which Smith said was the closest building to the epicentre of the February 22 quake. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Mr Wayne Tobeck, Director of Southrim Group (SRG), sponsored this 2013 MEM Project titled; A Technical and Economic Feasibility Study for the Integration of GSHP Technology in the Christchurch Rebuild. Following the recent Christchurch earthquakes, a significant amount of land has become too unstable to support traditional building foundations. This creates an opportunity to implement new and unique foundation designs previously unconsidered due to high costs compared to traditional methods. One such design proposes that an Injection Micro-Piling technique could be used. This can also be coupled with HVAC technology to create a Ground Source Heat Pump (GSHP) arrangement in both new buildings and as retrofits for building requiring foundation repair. The purpose of this study was to complete a feasibility study on the merits of SRG pursuing this proposed product. A significant market for such a product was found to exist, while the product was also found to be technically and legally feasible. However, the proposed product was found to not be economically feasible with respect to Air Source Heat Pumps due to the significantly higher capital and installation costs required. Further analysis suggests GSHPs may become more economically attractive in operating temperatures lower than -9oC, though the existence of markets with this climate in NZ has not been studied. It is therefore suggested that SRG do not proceed with plans to develop a GSHP coupled foundation solution for the Christchurch rebuild.

Research papers, Victoria University of Wellington

The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes.  The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world.  In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison.  The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs.  After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices.  Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.

Images, Alexander Turnbull Library

Cartoons about political and social issues in New Zealand and overseas. The cartoon has the words 'Tsunami Warning cancelled' in the centre. Above are the words 'The end is nigh... insurance running out! No more cover!' Below the word 'cancelled' are the words 'We have reinsurance!' Context - Civil Defence has cancelled a tsunami warning after a 7.8 magnitude earthquake struck off the Kermadec Islands this morning (7 July 2011) The tsunami image is used to illustrate the problems that could arise from lack of insurance in Christchurch. When their policies run out on 30 June Earthquake-hit Christchurch and Waimakariri councils are in danger of having no property insurance because as the CEO of Civic Assurance, which insures most councils, says, 'the company cannot buy reinsurance'. There was also a potential problem for home-owners when AMI Insurance, the largest insurer of homes in Christchurch, was threatening insolvency. However, AMI has announced that it has re-insurance cover for earthquakes and other natural disasters from tomorrow (1 July 2011) for the next year. The Government feared AMI Insurance's directors would wind up the company affecting a huge section of New Zealand's insurance market and derail the reconstruction of Christchurch, official documents confirm. AMI said it had doubled its cover for the year to June 2012 after three large quakes in the year to June 2011. (Stuff 30 June 2011) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.

Audio, Radio New Zealand

1. Rt Hon WINSTON PETERS to the Prime Minister: Has he had time to read and digest the judgement of Justice Miller regarding the Crafar farm deal; if so, does he stand by his comments made in the House yesterday? 2. Hon DAVID PARKER to the Minister for Land Information: Does he believe he and the Government have conducted themselves competently and appropriately in relation to the decision to approve the purchase of the Crafar farms by a foreign buyer; if not, what did they do wrong? 3. JONATHAN YOUNG to the Minister of Finance: What reports has the Government issued on the economy? 4. JACINDA ARDERN to the Minister for Social Development: Does she have confidence that Work and Income meets their own &quot;case management approach&quot; expectations? 5. JAN LOGIE to the Minister for Social Development: Does she have concerns that changes to the eligibility for the Training Incentive Allowance are causing single parent beneficiaries to consider working in the sex industry? 6. Dr CAM CALDER to the Minister of Health: What improvements have there been to services for patients as a result of greater collaboration between District Health Boards? 7. Hon CLAYTON COSGROVE to the Minister for State Owned Enterprises: Does he still intend to sell 49 per cent of the four State-owned energy companies? 8. JAMI-LEE ROSS to the Minister of Local Government: What analysis has he received on rate increases across New Zealand's 78 councils following the enactment of new local government legislation in 2002? 9. Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: Does he stand by the part of his statement of 27 January, announcing the extension of the red zone offer to retirement villages, that letters of offer would be sent to each resident and CERA would work with village owners as quickly as possible to ensure the residents are assisted; if not, why not? 10. Dr RUSSEL NORMAN to the Minister for Land Information: Did Overseas Investment Office officials meet with Chinese political consul Cheng Lei late last year; if so, did they discuss Shanghai Pengxin's bid for the Crafar farms? 11. CLARE CURRAN to the Minister of Broadcasting: What is the name of the documentary which was withheld in the papers released publicly by NZ On Air titled &quot;Records of decisions made at working group meeting&quot;? 12. Hon TAU HENARE to the Minister for Economic Development: What progress has he made declaring the Volvo Ocean Race Stopover a major event under the Major Events Management Act 2007?

Research papers, University of Canterbury Library

The Covid-19 pandemic has brought to the foreground the importance of social connectedness for wellbeing, at the individual, community and societal level. Within the context of the local community, pro-connection facilities are fundamental to foster community development, resilience and public health. Through identifying the gap in social connectedness literature for Māori, this has created space for new opportunities and to reflect on what is already occurring in Ōtautahi. It is well documented that Māori experience unequal societal impacts across all health outcomes. Therefore, narrowing the inequities between Māori and non-Māori across a spectrum of dimensions is a priority. Evaluating the #WellconnectedNZ project, which explores the intersections between social connection and wellbeing is one way to trigger these conversations. This was achieved by curating a dissimilar set of community pro-connection facilities and organizing them into a Geographic Information System (GIS). Which firstly involved, the collecting and processing of raw data, followed by spatial analysis through creating maps, this highlighted the alignment between the distribution of places, population and social data. Secondly, statistical analysis focusing on the relationship between deprivation and accessibility. Finally, semi-structured interviews providing perceptions of community experience. This study describes findings following a kaupapa Māori research approach. Results demonstrated that, in general some meshblocks in Ōtautahi benefit from a high level of accessibility to pro-connection facilities; but with an urban-rural gradient (as is expected, further from the central business district (CBD) are less facilities). Additionally, more-deprived meshblocks in the Southern and Eastern suburbs of Christchurch have poorer accessibility, suggesting underlying social and spatial inequalities, likely exacerbated by Covid-19 and the Christchurch earthquakes. In this context, it is timely to (re)consider pro-connection places and their role in the development of social infrastructure for connected communities, in the community facility planning space. ‘We are all interwoven, we just need to make better connections’.