Christ Church Cathedral, Christchurch, with spire being rebuilt after the 1901 earthquake. Photographer unidentified. The nave, tower and spire of Christchurch Cathedral was completed in 1881. Work on completeing the rest of the building began in 1900. In 1902 the transcepts were finished and work started on the chancel and apse. An earthquake in 1901 cracked the upper part of the spire in two places. In this photograph which dates from late 1902/1903 (see scaffolding beyond the transcept indicating work on chancel) the upper part of the spire has been removed by Messrs Graham and Greig in preparation for replacing this section with a copper covered wooden structure. The Cathedral was completed in 1904. (Information from "Vision and Reality; Christchurch Cathedral in the Square," Colin Brown, Christchurch, 2000 and "A Dream of Spires," Ian Lochhead, Canterbury University Press, 1999, page 153.) Preparation for erecting the scaffolding was reported in the Christchurch Star 15 January 1902. The cross was replaced on the top of the new copper covered wooden section of the spire on 29 June 1903. Source of descriptive information - Notes on file print. Source of title - Title supplied by Library Quantity: 1 b&w original negative(s). Physical Description: Glass negative
Recently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.