Search

found 687 results

Images, UC QuakeStudies

Detail of damage to a house in Richmond. A double-brick wall has collapsed. A wire loop which formerly tied the two layers of bricks together has pulled out from one of the layers, showing how the two parts of the wall moved apart during the shaking. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The remaining double brick by the back door has been further smashed and twisted".

Images, UC QuakeStudies

A photograph of the second storey of the partially-demolished Westende Jewellers Building on the corner of Manchester and Worcester Streets, which housed Alva Rados Mexican restaurant. The building was severely damage during the 4 September 2010 earthquake and had to be demolished.

Images, UC QuakeStudies

A house on Avonside Drive showing damage from the 4 September 2010 earthquake. Numerous cracks in the masonry can be seen, and several sections of brick have fallen off the walls. The building's porch has also collapsed. A pile of dried liquefaction is visible in the driveway.

Images, UC QuakeStudies

A close-up photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the largest section of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

Damage to a house in Richmond. Bricks have fallen from a wall, and there is a visible gap between the foundation and the surrounding ground. The photographer comments, "The foundation and a section of the wall of the dining room have shifted and cracked. The dining room floor is very springy".

Images, UC QuakeStudies

Internal damage to a house in Richmond. A large crack in the wallboard below a window has exposed the bricks, and the skirting board has moved away from the floor. The photographer comments, "Cracks in the wall of the sunroom. This is the interior view of the crack in the previous shot".

Images, UC QuakeStudies

A photograph looking east down Gloucester Street from near the Manchester Street intersection. Members of the Wellington Emergency Management Office Emergency Response Team and construction workers are walking down the street. To their right is the new Press House building with many broken windows. In the foreground, the Coachman building has sustained earthquake damage to the façade. Wire fences have been placed around the building as a cordon.

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The driveway is badly cracked and buckled. The photographer comments, "These photos show our old house in River Rd. The brick garage just collapsed, pulling the gate over as it fell".

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team standing in front of the earthquake-damaged Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have warped, breaking the glass. USAR codes have been spray-painted on one of the columns. A red sticker taped to the door indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team standing in front of the earthquake-damaged Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have also warped, breaking the glass. USAR codes have been spray-painted on one of the columns. A red sticker taped to the door indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Avonmore House on the corner of Hereford Street and Latimer Square. Large cracks have formed in the building, causing sections of the masonry to crumble. The windows on the Hereford Street side of the building have bent out of shape and many of the glass panes have shattered. USAR codes have been spray painted on the column next to the door. In the distance wire fencing has been placed across the street as a cordon.

Images, UC QuakeStudies

Internal damage to a house in Richmond. A doorframe has visibly warped, leaving a gap between the frame and the door. Outside, cracks can be seen in the concrete patio. The photographer comments, "Sunroom - bifold doors are now separated from the frame. The doors on the left blew right out in a strong wind 2 weeks after the quake".

Images, UC QuakeStudies

A photograph of staff from the Department of Physics and Astronomy from the University of Canterbury recovering parts of the Townsend Telescope from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of staff from the Department of Physics and Astronomy from the University of Canterbury recovering parts of the Townsend Telescope from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of rubble from a number of earthquake-damaged buildings on Bealey Avenue. Bricks from the building in the distance have spilled onto the footpath in front and wire fencing has been used to cordon it off. In the foreground, rubble from a demolished house can be seen. Cordon tape reading "danger keep out" has been draped across the fence.

Research papers, The University of Auckland Library

Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team inside an earthquake-damaged house. The wall to the left has collapsed and has been covered with plastic sheeting. Bricks and other rubble cover the floor of the room. A chest of drawers with clothing still inside has toppled to the left and is resting on the rubble.

Articles, UC QuakeStudies

A copy of a document from Empowered Christchurch which was sent to Queen Elizabeth. The document consists of a letter from Empowered Christchurch to Douglas Martin, Crown Manager from the Christchurch City Council, and Official Information Act requests sent to Building and Construction Minister Maurice Williamson and Canterbury Earthquake Recovery Minister Gerry Brownlee. It also includes an appeal to the Queen on behalf of Christchurch residents with badly-damaged houses. Please note that a letter from the Ministry of Business, Innovation and Employment, which was originally included in the document, has been removed due to copyright issues.

Images, UC QuakeStudies

Damage to River Road in Richmond. The road is badly cracked and slumped, and is closed off with a row of road cones tied with warning tape. The word "closed" has been spray painted on the road surface. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. River Rd was again subject to severe lateral spreading. The river is still grey with silt, the road is ripped and sunken, and power poles lean at random angles. The red car belonged to a postie, who had to come back with a tow truck to extricate the car from the hole that had opened underneath it. Looking along River Road to the north-east. Taken outside 79 Medway St".

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury earthquakes a detailed campaign of door to door assessments was conducted in a variety of areas of Christchurch to establish the earthquake performance of residential dwellings having masonry veneer as an external cladding attached to a lightweight timber framing system. Specifically, care was taken to include regions of Christchurch which experienced different levels of earthquake shaking in order to allow comparison between the performance of different systems and different shaking intensities. At the time of the inspections the buildings in the Christchurch region had been repeatedly subjected to large earthquakes, presenting an opportunity for insight into the seismic performance of masonry veneer cladding. In total just under 1100 residential dwellings were inspected throughout the wider Christchurch area, of which 24% were constructed using the older nail-on veneer tie system (prior to 1996) and 76% were constructed using screw fixed ties to comply with the new 1996 standards revision (post-1996), with 30% of all inspected houses being of two storey construction. Of the inspected dwellings 27% had some evidence of liquefaction, ground settlement or lateral spreading. Data such as damage level, damage type, crack widths, level of repair required and other parameters were collected during the survey. A description of the data collection processes and a snapshot of the analysis results are presented within. http://15ibmac.com/home/

Research papers, The University of Auckland Library

During the recent devastating earthquakes in Christchurch, many residential houses were damaged due to widespread liquefaction of the ground. In-situ testing is widely used as a convenient method for evaluating liquefaction potential of soils. Cone penetration test (CPT) and standard penetration test (SPT) are the two popular in situ tests which are widely used in New Zealand for site characterization. The Screw Driving Sounding (SDS) method is a relatively new operating system developed in Japan consisting of a machine that drills a rod into the ground by applying torque at seven steps of axial loading. This machine can continuously measure the required torque, load, speed of penetration and rod friction during the test, and therefore can give a clear overview of the soil profile along the depth of penetration. In this paper, based on a number of SDS tests conducted in Christchurch, a correlation was developed between tip resistance of CPT test and SDS parameters for layers consisting of different fines contents. Moreover, using the obtained correlation, a chart was proposed which relates the cyclic resistance ratio to the appropriate SDS parameter. Using the proposed chart, liquefaction potential of soil can be estimated directly using SDS data. As SDS method is simpler, faster and more economical test than CPT and SPT, it can be a reliable alternative in-situ test for soil characterization, especially in residential house constructions.