A paper for the SCIRT Board which requests that the Board provide support to recruit a Project Manager to support the development of a civil trade qualification.
A power pole on River Road is on a lean, stretching the power lines taut. Two lines have broken and are hanging from the pole. The photographer comments, "Power poles stretched wires to breaking point".
Damage to a house in Richmond. A large crack runs through a concrete patio. The photographer comments, "The concrete patio is broken into big slabs. Over the following week this subsided even further".
A copy of the award application which SCIRT, the Christchurch City Council, Environment Canterbury and Beca submitted for the New Zealand Planning Institute Best Practice Award in February 2013.
An example of a briefing provided to support staff hosting an event so they fully understood their roles and the focus of the event. The document was created in 2012.
Members of the University of Canterbury's E-Learning team in their temporary office in the NZi3 building. The photographer comments, "E-learning group had one bay of desks to work from for 3 weeks".
Internal damage to a house in Richmond. A crack runs diagonally upwards from the corner of a doorway. Below, a picture is askew. The photographer comments, "Small cracks in the kitchen wall".
Members of the University of Canterbury's E-Learning team in their temporary office space in the NZi3 building. The photographer comments, "E-Learning group meeting; Jess Hollis, Antoine Monti, Susan Tull, Alan Hoskin, Herbert Thomas".
Demolition (Deconstruction) of the partially pancaked multi story car park above the old Smith City building. Taken from the Moorhouse-Colombo Street flyover.
A video of a presentation by Thomas Petschner during the Resilience and Response Stream of the 2016 People in Disasters Conference. The presentation is titled, "Medical Clowning in Disaster Zones".The abstract for this presentation reads as follows: To be in a crisis caused by different kinds of natural disasters (as well as a man made incidents), dealing with ongoing increase of problems and frequent confrontation with very bad news isn't something that many people can easily cope with. This applies obviously to affected people but also to the members of SAR teams, doctors in the field and the experienced humanitarians too. The appropriate use of humour in crisis situations and dis-functional environments is a great tool to make those difficult moments more bearable for everyone. It helps injured and traumatised people cope with what they're facing, and can help them to recover more quickly too. At the same time humorous thinking can help to solve some of the complex problems emergency responders face. This is in addition to emergency and medical only reactions - allowing for a more holistic human perspective, which can provide a positive lasting effect. The ability to laugh is hardwired into our systems bringing a huge variety of physical, mental and social benefits. Even a simple smile can cultivate optimism and hope, while laughter can boost a hormone cocktail - which helps to cope with pain, enhance the immune system, reduce stress, re-focus, connect and unite people during difficult times. Humour as an element of psychological response in crisis situations is increasingly understood in a much wider sense: as the human capacity to plan and achieve desired outcomes with less stress, thus resulting in more 'predictable' work in unpredictable situations. So, if we approach certain problems in the same way Medical Clowns do, we may find a more positive solution. Everyone knows that laughter is an essential component of a healthy, happy life. The delivery of 'permission to laugh' into disaster zones makes a big difference to the quality of life for everyone, even if it's for a very short, but important period of time. And it's crucial to get it right as there is no second chance for the first response.
The use of post-earthquake cordons as a tool to support emergency managers after an event has been documented around the world. However, there is limited research that attempts to understand the use, effectiveness, inherent complexities, impacts and subsequent consequences of cordoning once applied. This research aims to fill that gap by providing a detailed understanding of first, the cordons and associated processes, and their implications in a post-earthquake scenario. We use a qualitative method to understand cordons through case studies of two cities where it was used in different temporal and spatial scales: Christchurch (2011) and Wellington (Kaikōura earthquake 2016), New Zealand. Data was collected through 21 expert interviews obtained through purposive and snowball sampling of key informants who were directly or indirectly involved in a decision-making role and/or had influence in relation to the cordoning process. The participants were from varying backgrounds and roles i.e. emergency managers, council members, business representatives, insurance representatives, police and communication managers. The data was transcribed, coded in Nvivo and then grouped based on underlying themes and concepts and then analyzed inductively. It is found that cordons are used primarily as a tool to control access for the purpose of life safety and security. But cordons can also be adapted to support recovery. Broadly, it can be synthesized and viewed based on two key aspects, ‘decision-making’ and ‘operations and management’, which overlap and interact as part of a complex system. The underlying complexity arises in large part due to the multitude of sectors it transcends such as housing, socio-cultural requirements, economics, law, governance, insurance, evacuation, available resources etc. The complexity further increases as the duration of cordon is extended.
A video of a presentation by Margaret Moreton during the Community and Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Community and Social Service Organisations in Emergencies and Disasters in Australia and New Zealand".
An article from the Media Studies Journal of Aotearoa New Zealand Volume 14, Number 1. The article is titled, "Social Media, Crisis Mapping and the Christchurch Earthquakes of 2011". It was written by Abi Beatson, Angi Buettner, and Tony Schirato.
Damage to Englefield Lodge on Fitzgerald Avenue. A pile of bricks lies in front of the house, windows are boarded up, and wooden bracing is propping up the walls. A spray-painted message on a wall reads "We will try to save this house." The photographer comments, "A bike ride around the CBD. Englefield, Christchurch's oldest house, in Fitzgerald Ave".
Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The driveway is cracked and covered in liquefaction. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. Does that wall look straight to you?
The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.
The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.
The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.
The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.
Background and methodology The Mw 7.8, 14th November 2016 earthquake centred (item b, figure 1) in the Hurunui District of the South Island, New Zealand, damaged critical infrastructure across North Canterbury and Marlborough. We investigate the impacts to infrastructure and adaptations to the resulting service disruption in four small rural towns (figure 1): Culverden (a), Waiau (c), Ward (d) and Seddon (e). This is accomplished though literary research, interviews and geospatial analysis. Illustrating our methods, we have displayed here a Hurunui District hazard map (figure 2b) and select infrastructure inventories (figures 2a, 3).
Damage to the Dallington Discount Market, the facade of which has collapsed.
Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. The liquefaction behaviour of Christchurch fines-containing (silty) sands is investigated through a series of Direct Simple Shear (DSS) tests. This type of test better resembles earthquake loading conditions in soil deposits compared to cyclic triaxial tests. Soil specimens are reconstituted in the laboratory with the water sedimentation technique. This preparation method yields soil fabrics similar to those encountered in fluvial soil deposits, which are common in the Christchurch area. Test results provide preliminary indications on how void ratio, relative density, preparation method and fines content influence the cyclic liquefaction behaviour of sand-silt mixtures depending on the properties of host sand and silt.
A photograph of CPIT students and members of the public constructing an outdoor pizza oven for Gap Filler out of clay and bricks. The public workshop was part of FESTA 2012.
A photograph of CPIT students and members of the public constructing an outdoor pizza oven for Gap Filler out of clay and bricks. The public workshop was part of FESTA 2012.
A photograph of CPIT students and members of the public constructing an outdoor pizza oven for Gap Filler out of clay and bricks. The public workshop was part of FESTA 2012.
A photograph of CPIT students constructing an outdoor pizza oven for Gap Filler out of clay and bricks. The public workshop was part of FESTA 2012.
A photograph of CPIT students constructing an outdoor pizza oven for Gap Filler out of clay and bricks. The public workshop was part of FESTA 2012.
A photograph of CPIT students and members of the public constructing an outdoor pizza oven for Gap Filler out of clay and bricks. The public workshop was part of FESTA 2012.
A photograph of CPIT students and members of the public constructing an outdoor pizza oven for Gap Filler out of clay and bricks. The public workshop was part of FESTA 2012.
A photograph of a participant at an outdoor pizzeria earth-building workshop. The event was part of FESTA 2012.