Search

found 6668 results

Images, UC QuakeStudies

A photograph of Tim Corry, Community Development Worker at the Christchurch Methodist Mission, taking part in #FiveYearsOn. Corry is from the Christchurch Methodist Mission's Wellbeing New Brighton Project, an All Right? Champion. Corry holds a sign which reads, "Five years on, I feel... that my glass is half full." All Right? posted the photograph on their Facebook Timeline on 21 February 2016 at 9:27am. All Right? captioned the photograph, "Tim from the Christchurch City Mission is feeling that his glass is half full. #fiveyears on #5yearson #allrightnz". (This was later corrected in the comments to, "the magnificent Christchurch METHODIST Mission".)

Research papers, University of Canterbury Library

The level of destruction from the 2011 Christchurch earthquakes led to changes in the New Zealand seismic building code. The destruction showed that the NZ building codes did not fully performed to expectation and needed Improvement to ensure that impact of future earthquakes would be minimised. The building codes have been amended to improve buildings resilience to earthquake and other related extreme loading conditions. Rebuilding Christchurch with the new modifications in the seismic building code comes with its own unique challenges to the entire system. This project investigates the impact of rebuilding Christchurch with the new seismic Building codes in terms of how the new changes affected the building industry and the management of construction.

Research papers, University of Canterbury Library

After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner’s insurance. Most people chose the second option. Using data from LINZ combined with data from StatNZ, this project empirically investigates what led people to choose this second option, and what were the implications of these choices for the owners’ wealth and income.

Research papers, The University of Auckland Library

The skills agenda has grown in prominence within the construction industry. Indeed, skill shortages have been recognised as a perennial problem the construction industry faces, especially after a major disaster. In the aftermath of the Christchurch earthquakes, small and medium construction companies were at the forefront of rebuilding efforts. While the survival of these companies was seen to be paramount, and extreme events were seen to be a threat to survival, there is a dearth of research centring on their resourcing capacity following a disaster. This research aims to develop workforce resourcing best practice guidelines for subcontractors in response to large disaster reconstruction demands. By using case study methods, this research identified the challenges faced by subcontracting businesses in resourcing Christchurch recovery projects; identified the workforce resourcing strategies adopted by subcontracting businesses in response to reconstruction demand; and developed a best practice guideline for subcontracting businesses in managing the workforce at the organisational and/or project level. This research offers a twofold contribution. First, it provides an overview of workforce resourcing practices in subcontracting businesses. This understanding has enabled the development of a more practical workforce resourcing guideline for subcontractors. Second, it promotes evidence-informed decision-making in subcontractors’ workforce resourcing. Dynamics in workforce resourcing and their multifaceted interactions were explicitly depicted in this research. More importantly, this research provides a framework to guide policy development in producing a sustainable solution to skill shortages and establishing longterm national skill development initiatives. Taken together, this research derives a research agenda that maps under-explored areas relevant for further elaboration and future research. Prospective researchers can use the research results in identifying gaps and priority areas in relation to workforce resourcing.

Research papers, The University of Auckland Library

This thesis is a creative and critical exploration of how transmedia storytelling meshes with political documentary’s nature of representing social realities and goals to educate and promote social change. I explore this notion through Obrero (“worker”), my independently produced transmedia and transjournalistic documentary project that explores the conditions and context of the Filipino rebuild workers who migrated to Christchurch, New Zealand after the earthquake in 2011. While the project should appeal to New Zealanders, it is specifically targeted at an audience from the Philippines. Obrero began as a film festival documentary that co-exists with strategically refashioned Web 2.0 variants, a social network documentary and an interactive documentary (i-doc). Using data derived from the production and circulation of Obrero, I interrogate how the documentary’s variants engage with differing audiences and assess the extent to which this engagement might be effective. This thesis argues that contemporary documentary needs to re-negotiate established film aesthetics and practices to adapt in the current period of shifting technologies and fragmented audiences. Documentary’s migration to new media platforms also creates a demand for filmmakers to work with a transmedia state of mind—that is, the capacity to practise the old canons of documentary making while comfortably adjusting to new media production praxis, ethics, and aesthetics. Then Obrero itself, as the creative component of this thesis, becomes an instance of research through creative practice. It does so in two respects: adding new knowledge about the context, politics, and experiences of the Filipino workers in New Zealand; and offering up a broader model for documentary engagement, which I analyse for its efficacy in the digital age.

Images, UC QuakeStudies

Paul Nicholls from the University of Canterbury's E-Learning team and Digital Media Group Manager Wayne Riggall in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Adjoining our area is a space for Wayne, the Digital Media Group Manager, who will organise a sitting area for visitors and small meetings. Beyond Wayne is a closed-off meeting room".

Images, UC QuakeStudies

A photograph of an 'All Rightie' posing with a hard hat for the 'BYO CSO' prize draw. The 'BYO CSO' was one of the 'Outrageous Bursts of All Right' projects, in which the Christchurch Symphony Orchestra entertained customers at Wainoni Pak'nSave by setting up and performing a piece of music in the supermarket itself. The performance and customers' reactions were filmed and shared on social media. All Right? encouraged their followers to share the video around by entering everyone who did so into the prize draw for one of eight $250 Pak'nSave vouchers. All Right? posted the photograph on their Facebook page on 8 April 2014 at 6:00am.

Images, UC QuakeStudies

Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking up the centre of the room towards the front doors. The video conferencing team and Nikki Saunders, the course reader publisher, sit here. (The pizzas are for a moving-in celebration held just after I took these photos.)

Videos, UC QuakeStudies

A video of Ladi6 and All Right? staff member Ciaran Fox "getting out and about", being shown around the Chart BeatBox Studio by Deanne Simmonds, CHART/BeatBox manager. BeatBox is located on the corner of St Asaph St and Madras St, and it has provided a studio space in the CBD for musicians and other creatives. BeatBox has also received support from government agencies and community organisations for providing an essential central city project in transitional Christchurch. All Right? uploaded the video to YouTube on 21 April 2015 and posted a link to the video on their Facebook Timeline on 4 May 2015 at 7:00pm.

Images, UC QuakeStudies

Paul Nicholls, a member of the University of Canterbury's E-Learning team, in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Closer view of our corner of the building. We will have some cubicle partitions soon, but I don't know how we'll configure the space then. It's quite nice being so open, but it may be too noisy".

Images, UC QuakeStudies

Paul Nicholls, a member of the University of Canterbury's E-Learning team, in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Our "techy corner", with Paul waiting for the desk-assembler to come back and put his desk together. My desk is in the corner, and Jess is on the right of the window".

Research papers, The University of Auckland Library

Five years on since the first major earthquake struck the Canterbury region, the reconstruction is well advanced. Christchurch is a city in transition. This report considers trends in resourcing and employment practice of Canterbury construction organisations in response to the projected market changes (2015-2016). The report draws on the interviews with 18 personnel from 16 construction organisations and recovery agencies in October 2015. It provides a summary of perceived changes in the construction market in Canterbury, evidence of what steps construction businesses have been taking, how they have prepared for likely changes in the reconstruction sector, as well as the perceived alignment of public policies with the industry response.

Research papers, University of Canterbury Library

This paper presents on-going challenges in the present paradigm shift of earthquakeinduced ground motion prediction from empirical to physics-based simulation methods. The 2010-2011 Canterbury and 2016 Kaikoura earthquakes are used to illustrate the predictive potential of the different methods. On-going efforts on simulation validation and theoretical developments are then presented, as well as the demands associated with the need for explicit consideration of modelling uncertainties. Finally, discussion is also given to the tools and databases needed for the efficient utilization of simulated ground motions both in specific engineering projects as well as for near-real-time impact assessment.

Research papers, University of Canterbury Library

The operation of telecommunication networks is critical during business as usual times, and becomes most vital in post-disaster scenarios, when the services are most needed for restoring other critical lifelines, due to inherent interdependencies, and for supporting emergency and relief management tasks. In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure appears to be underrepresented in the literature. The FP6 QuakeCoRE project “Performance of the Telecommunication Network during the Canterbury Earthquake Sequence” will provide a critical contribution to bridge this gap. Thanks to an unprecedented collaboration between national and international researchers and highly experienced asset managers from Chorus, data and evidences on the physical and functional performance of the telecommunication network after the Canterbury Earthquakes 2010-2011 have been collected and collated. The data will be processed and interpreted aiming to reveal fragilities and resilience of the telecommunication networks to seismic events

Articles, UC QuakeStudies

A copy of a letter from Hugo Kristinsson which was sent to Prince William, the Duke of Cambridge, on 2 March 2014 . The letter was sent on behalf of Empowered Christchurch, as a response to the letter read by the Prince at the official Civic Memorial Service on the 22 February 2014. Kristinsson thanks the Prince for his letter and updates him on the progress of the rebuild. He expresses his respect for King George VI and Queen Elizabeth for their compassion in the early 1940s to the victims of bombing raids during the war and acknowledge's Prince William and Prince Harry's philanthropy through The Royal Foundation of the Duke and Duchess of Cambridge and Prince Harry and The Princes' Charities Forum. Lastly he implores the Prince and the Duchess of Cambridge to visit residents from the 'low-lying seaside side of the city' who 'feel that their plight has been trivialised by the authorities in favour of prestigious big-budget projects'.

Research papers, University of Canterbury Library

Knowing how to rapidly rebuild disaster-damaged infrastructure, while deciding appropriate recovery strategies and catering for future investment is a matter of core interest to government decision makers, utility providers, and business sectors. The purpose of this research is to explore the effects of decisions and outcomes for physical reconstruction on the overall recovery process of horizontal infrastructure in New Zealand using the Canterbury and Kaikoura earthquakes as cases. A mixed approach including a systematic review, questionnaire survey and semi-structured interviews is used to capture perspectives of those involved in reconstruction process and gain insights into the effect of critical elements on infrastructure downtime. Findings from this research will contribute towards advancements of a systems dynamics model considering critical decision-making variables across phases of the reconstruction process to assess how these variables affect the rebuild process and the corresponding downtime. This project will improve the ability to explore alternative resilience improvement pathways and test the efficacy of alternative means for facilitating a faster and better reconstruction process.

Research papers, The University of Auckland Library

The purpose of this paper is to empirically investigate the effects of a major disaster on the management of human resources in the construction sector. It sets out to identify the construction skills challenges and the factors that affected skills availability following the 2010/2011 earthquakes in Christchurch. It is hoped that this study will provide insights for on-going reconstruction and future disaster response with respect to the problem of skills shortages. Design/methodology/approach A triangulation method was adopted. The quantitative method, namely, a questionnaire survey, was employed to provide a baseline description. Field observations and interviews were used as a follow-up to ascertain issues and potential shortages over time. Three focus groups in the form of research workshops were convened to gain further insight into the feedback and to investigate the validity and applicability of the research findings. Findings The earthquakes in Christchurch had compounded the pre-existing skills shortages in the country due to heightened demand from reconstruction. Skills shortages primarily existed in seismic assessment and design for land and structures, certain trades, project management and site supervision. The limited technical capability available nationally, shortage of temporary accommodation to house additional workers, time needed for trainees to become skilled workers, lack of information about reconstruction workloads and lack of operational capacity within construction organisations, were critical constraints to the resourcing of disaster recovery projects. Research limitations/implications The research findings contribute to the debate on skills issues in construction. The study provides evidence that contributes to an improved understanding of the industry’s skills vulnerability and emerging issues that would likely exist after a major disaster in a resource-limited country such as New Zealand. Practical implications From this research, decision makers and construction organisations can gain a clear direction for improving the construction capacity and capability for on-going reconstruction. Factors that affected the post-earthquake skills availability can be considered by decision makers and construction organisations in their workforce planning for future disaster events. The recommendations will assist them in addressing skills shortages for on-going reconstruction. Originality/value Although the study is country-specific, the findings show the nature and scale of skills challenges the construction industry is likely to face following a major disaster, and the potential issues that may compound skills shortages. It provides lessons for other disaster-prone countries where the resource pool is small and a large number of additional workers are needed to undertake reconstruction.

Research papers, The University of Auckland Library

This article is a critical commentary of how political documentary embodies the traits and functions of alternative journalism. I explore this notion through Obrero (‘worker’) my independent documentary project about the labour migration of Filipino workers to Christchurch, Aotearoa New Zealand, after the earthquake in 2011. This article maps out the points at where the theories and practices of alternative media and documentary intersect. Analysing political documentary as a format of alternative journalism has links to the long tradition of film and video production as a tool for social critique. As a form of practice-based research, Obrero falls under the rubric of alternative journalism—able to represent the politically marginal sectors of the polity and report on issues underreported in the mainstream press. This article concludes that a distribution plan that is responsive to fragmenting audiences works best when alternative journalism no longer targets a niche but transborder audiences.

Research papers, University of Canterbury Library

Well-validated liquefaction constitutive models are increasingly important as non-linear time history analyses become relatively more common in industry for key projects. Previous validation efforts of PM4Sand, a plasticity model specifically for liquefaction, have generally focused on centrifuge tests; however, pore pressure transducers installed at several free-field sites during the Canterbury Earthquake Sequence (CES) in Christchurch, New Zealand provide a relatively unique dataset to validate against. This study presents effective stress site response analyses performed in the finite difference software FLAC to examine the capability of PM4Sand to capture the generation of excess pore pressures during earthquakes. The characterization of the subsurface is primarily based on extensive cone penetration tests (CPT) carried out in Christchurch. Correlations based on penetration resistances are used to estimate soil parameters, such as relative density and shear wave velocity, which affect liquefaction behaviour. The resulting free-field FLAC model is used to estimate time histories of excess pore pressure, which are compared with records during several earthquakes in the CES to assess the suitability of PM4Sand.

Research papers, The University of Auckland Library

While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.

Research papers, The University of Auckland Library

The Canterbury earthquake sequence of 2010-2011 wrought ruptures in not only the physical landscape of Canterbury and Christchurch’s material form, but also in its social, economic, and political fabrics and the lives of Christchurch inhabitants. In the years that followed, the widespread demolition of the CBD that followed the earthquakes produced a bleak landscape of grey rubble punctuated by damaged, abandoned buildings. It was into this post-earthquake landscape that Gap Filler and other ‘transitional’ organisations inserted playful, creative, experimental projects to bring life and energy back into the CBD. This thesis examines those interventions and the development of the ‘Transitional Movement’ between July 2013 and June 2015 via the methods of walking interviews and participant observation. This critical period in Christchurch’s recovery serves as an example of what happens when do-it-yourself (DIY) urbanism is done at scale across the CBD and what urban experimentation can offer city-making. Through an understanding of space as produced, informed by Lefebvre’s thinking, I explore how these creative urban interventions manifested a different temporality to orthodox planning and demonstrate how the ‘soft’ politics of these interventions contain the potential for gentrification and also a more radical politics of the city, by creating an opening space for difference.

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of several walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to NZS 3101. A database summarising of the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and an experimental setup has been developed to subject RC wall specimen to loading that is representative of a multi-storey building. Numerical modelling is being used to understand the observed performance of several case-study RC walls buildings in Christchurch. Of particular interest is the influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls.

Research papers, University of Canterbury Library

Natural catastrophes are increasing worldwide. They are becoming more frequent but also more severe and impactful on our built environment leading to extensive damage and losses. Earthquake events account for the smallest part of natural events; nevertheless seismic damage led to the most fatalities and significant losses over the period 1981-2016 (Munich Re). Damage prediction is helpful for emergency management and the development of earthquake risk mitigation projects. Recent design efforts focused on the application of performance-based design engineering where damage estimation methodologies use fragility and vulnerability functions. However, the approach does not explicitly specify the essential criteria leading to economic losses. There is thus a need for an improved methodology that finds the critical building elements related to significant losses. The here presented methodology uses data science techniques to identify key building features that contribute to the bulk of losses. It uses empirical data collected on site during earthquake reconnaissance mission to train a machine learning model that can further be used for the estimation of building damage post-earthquake. The first model is developed for Christchurch. Empirical building damage data from the 2010-2011 earthquake events is analysed to find the building features that contributed the most to damage. Once processed, the data is used to train a machine-learning model that can be applied to estimate losses in future earthquake events.

Research papers, The University of Auckland Library

Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/2013-2/

Research papers, The University of Auckland Library

Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the unsatisfactory performance of several RC wall buildings during the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of RC walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to the New Zealand Concrete Structures Standard. A database summarising the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and initial numerical modeling and small-scale tests are presented in addition to details of planned experimental tests of RC walls. Numerical modelling is being used to understand the potential influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls. The results from finite element analysis of a severely damaged RC wall in Christchurch highlighted the effect that the floor diaphragms have on the distribution of shear stains in the wall.

Research Papers, Lincoln University

Within four weeks of the September 4 2010 Canterbury Earthquake a new, loosely-knit community group appeared in Christchurch under the banner of “Greening the Rubble.” The general aim of those who attended the first few meetings was to do something to help plug the holes that had already appeared or were likely to appear over the coming weeks in the city fabric with some temporary landscaping and planting projects. This article charts the first eighteen months of Greening the Rubble and places the initiative in a broader context to argue that although seismic events in Christchurch acted as a “call to palms,” so to speak, the city was already in need of some remedial greening. It concludes with a reflection on lessons learned to date by GTR and commentary on the likely issues ahead for this new mini-social-environmental movement in the context of a quake-affected and still quake-prone major New Zealand city. One of the key lessons for GTR and all of those involved in Christchurch recovery activities to date is that the city is still very much in the middle of the event and is to some extent a laboratory for seismic and agency management studies alike.

Research papers, University of Canterbury Library

Despite the relatively low seismicity, a large earthquake in the Waikato region is expected to have a high impact, when the fourth-largest regional population and economy and the high density critical infrastructure systems in this region are considered. Furthermore, Waikato has a deep soft sedimentary basin, which increases the regional seismic hazard due to trapping and amplification of seismic waves and generation of localized surface waves within the basin. This phenomenon is known as the “Basin Effect”, and has been attributed to the increased damage in several historic earthquakes, including the 2010-2011 Canterbury earthquakes. In order to quantitatively model the basin response and improve the understanding of regional seismic hazard, geophysical methods will be used to develop shear wave velocity profiles across the Waikato basin. Active surface wave methods involve the deployment of linear arrays of geophones to record the surface waves generated by a sledge hammer. Passive surface wave methods involve the deployment of two-dimensional seismometer arrays to record ambient vibrations. At each site, the planned testing includes one active test and two to four passive arrays. The obtained data are processed to develop dispersion curves, which describe surface wave propagation velocity as a function of frequency (or wavelength). Dispersion curves are then inverted using the Geopsy software package to develop a suite of shear wave velocity profiles. Currently, more than ten sites in Waikato are under consideration for this project. This poster presents the preliminary results from the two sites that have been tested. The shear wave velocity profiles from all sites will be used to produce a 3D velocity model for the Waikato basin, a part of QuakeCoRE flagship programme 1.

Research papers, University of Canterbury Library

The Canterbury region of New Zealand experienced a sequence of strong earthquakes during 2010-2011. Responses included government acquisition of many thousands of residential properties in the city of Christchurch in areas with severe earthquake effects. A large and contiguous tract of this ‘red zoned’ land lies in close proximity to the Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). The focus of this study was to provide an overview of the floodplain characteristics of the AORZ and review of international experience in ecological restoration of similar river margin and floodplain ecosystems to extract restoration principles and associated learnings. Compared to pre-earthquake ground levels, the dominant trend in the AORZ is subsidence, together with lateral movement especially in the vicinity of waterway. An important consequence of land subsidence in the lower Ōtākaro / Avon River is greater exposure to flooding and the effects of sea level rise. Scenario modelling for sea level rise indicates that much of the AORZ is exposed to inundation within a 100 year planning horizon based on a 1 m sea level rise. As with decisions on built infrastructure, investments in nature-based ‘green infrastructure’ also require a sound business case including attention to risks posed by climate change. Future-proofing of the expected benefits of ecological restoration must therefore be secured by design. Understanding and managing the hydrology and floodplain dynamics are vital to the future of the AORZ. However, these characteristics are shared by other floodplain and river restoration projects worldwide. Identifying successful approaches provides a useful a source of useful information for floodplain planning in the AORZ. This report presents results from a comparative case study of three international examples to identify relevant principles for large-scale floodplain management at coastal lowland sites.

Research papers, The University of Auckland Library

This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.