Search

found 936 results

Images, UC QuakeStudies

A Civil Defence staff member completing a Level 1 Rapid Assessment inspection form for a damaged house. Some of the brickwork has collapsed from the outer wall and the awnings over the windows have collapsed.

Images, UC QuakeStudies

A Civil Defence staff member completing a Level 1 Rapid Assessment inspection form for a damaged house. Some of the brickwork has collapsed from the outer wall of the house and the awnings over the windows have collapsed.

Images, UC QuakeStudies

A photograph of a dusty monitor in an earthquake-damaged building on Poplar Street taken during the Residential Access Project. The Residential Access Project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake. Dislodged bricks can also be seen around the monitor.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Bealey Avenue near Springfield Road. The walls have crumbled, the bricks spilling onto the footpath in front. the ceiling of the building has been braced with scaffolding. Wire fencing and police tape has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to Knox Church on the corner of Bealey Avenue and Victoria Street. The walls of the gables have crumbled, and the bricks have fallen onto the footpath. Road cones, metal fences, and cordon tape have been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to the former Canterbury Public Library on the corner of Hereford Street and Cambridge Terrace. The bricks in the corner of the building have crumbled and masonry can be seen on the footpath below. Wire fences have been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to Charlie B's Backpackers on Madras Street. The front of the building has collapsed, the bricks and other rubble spilling onto the road and footpath in front. Many of the walls inside the top storey of the building are now hanging loose from the ceiling.

Images, UC QuakeStudies

A photograph of the earthquake damage to a building on the corner of Hereford and Madras Streets. Sections of the walls have crumbled, the bricks spilling onto the footpath below. The frame of a window has fallen onto the scaffolding, and many of the glass windows have smashed.

Images, UC QuakeStudies

A photograph of the earthquake damage to Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have warped, breaking the glass. USAR codes have been spray-painted on one of the columns.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Bealey Avenue near Springfield Road. The walls have crumbled, the bricks spilling onto the footpath in front. the ceiling of the building has been braced with scaffolding. Wire fencing and police tape has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Bealey Avenue near Springfield Road. The walls have crumbled, the bricks spilling onto the footpath in front. the ceiling of the building has been braced with scaffolding. A red sticker on the door indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Bealey Avenue near Springfield Road. The walls have crumbled, the bricks spilling onto the footpath in front. The ceiling of the building has been braced with scaffolding. Wire fencing and police tape has been placed around the building as a cordon.

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The driveway is cracked and covered in liquefaction. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. Does that wall look straight to you?

Images, UC QuakeStudies

The brick facade has fallen from the former Princess Cinema in New Brighton, exposing the rooms inside, and crushing a car parked below. The photographer comments, "The front of the old Princess Cinema in New Brighton after the earthquake in Christchurch, New Zealand on 22 February. Under the pile of bricks is a luckily unoccupied blue car. The word CLEAR on the broken facade is to show that there is no one in the car. This building has now been knocked down as it was so dangerous".

Research papers, University of Canterbury Library

In most design codes, infill walls are considered as non-structural elements and thus are typically neglected in the design process. The observations made after major earthquakes (Duzce 1999, L’Aquila 2009, Christchurch 2011) have shown that even though infill walls are considered to be non-structural elements, they interact with the structural system during seismic actions. In the case of heavy infill walls (i.e. clay brick infill walls), the whole behaviour of the structure may be affected by this interaction (i.e. local or global structural failures such as soft storey mechanism). In the case of light infill walls (i.e. non-structural drywalls), this may cause significant economical losses. To consider the interaction of the structural system with the ‘non-structural ’infill walls at design stage may not be a practical approach due to the complexity of the infill wall behaviour. Therefore, the purpose of the reported research is to develop innovative technological solutions and design recommendations for low damage non-structural wall systems for seismic actions by making use of alternative approaches. Light (steel/timber framed drywalls) and heavy (unreinforced clay brick) non-structural infill wall systems were studied by following an experimental/numerical research programme. Quasi-static reverse cyclic tests were carried out by utilizing a specially designed full scale reinforced concrete frame, which can be used as a re-usable bare frame. In this frame, two RC beams and two RC columns were connected by two un-bonded post tensioning bars, emulating a jointed ductile frame system (PRESSS technology). Due to the rocking behaviour at the beam-column joint interfaces, this frame was typically a low damage structural solution, with the post-tensioning guaranteeing a linear elastic behaviour. Therefore, this frame could be repeatedly used in all of the tests carried out by changing only the infill walls within this frame. Due to the linear elastic behaviour of this structural bare frame, it was possible to extract the exact behaviour of the infill walls from the global results. In other words, the only parameter that affected the global results was given by the infill walls. For the test specimens, the existing practice of construction (as built) for both light and heavy non-structural walls was implemented. In the light of the observations taken during these tests, modified low damage construction practices were proposed and tested. In total, seven tests were carried out: 1) Bare frame , in order to confirm its linear elastic behaviour. 2) As built steel framed drywall specimen FIF1-STFD (Light) 3) As built timber framed drywall specimen FIF2-TBFD (Light) 4) As built unreinforced clay brick infill wall specimen FIF3-UCBI (Heavy) 5) Low damage steel framed drywall specimen MIF1-STFD (Light) 6) Low damage timber framed drywall specimen MIF2-TBFD (Light) 7) Low damage unreinforced clay brick infill wall specimen MIF5-UCBI (Heavy) The tests of the as built practices showed that both drywalls and unreinforced clay brick infill walls have a low serviceability inter-storey drift limit (0.2-0.3%). Based on the observations, simple modifications and details were proposed for the low damage specimens. The details proved to be working effectively in lowering the damage and increasing the serviceability drift limits. For drywalls, the proposed low damage solutions do not introduce additional cost, material or labour and they are easily applicable in real buildings. For unreinforced clay brick infill walls, a light steel sub-frame system was suggested that divides the infill panel zone into smaller individual panels, which requires additional labour and some cost. However, both systems can be engineered for seismic actions and their behaviour can be controlled by implementing the proposed details. The performance of the developed details were also confirmed by the numerical case study analyses carried out using Ruaumoko 2D on a reinforced concrete building model designed according to the NZ codes/standards. The results have confirmed that the implementation of the proposed low damage solutions is expected to significantly reduce the non-structural infill wall damage throughout a building.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Montgomery's Building on the corner of Colombo and Tuam Streets. Large sections of the façade have collapsed, exposing the inside of the building. The bricks and other rubble have mostly been cleared from the footpath and street in front. Wire fences have been placed around the building as a cordon. In the distance there is a large pile of bricks on a property where another building has collapsed.

Images, UC QuakeStudies

Damage to the Lyttelton Hotel on Norwich Quay. The top of the building has crumbled, bringing the roof down with it. Bricks have fallen on the awning and all along the footpath. Wire fencing and road cones have been used to create a cordon around the building.

Images, UC QuakeStudies

Damaged shops on the corner of Worcester Street and Stanmore Road. The top level of the shops has collapsed onto the footpath in front where the rubble still lies. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of earthquake damage to the Crown Masonic Lodge on Wordsworth Street, also known as the Freemasons Centre. Sections of this brick wall at the front of the building have collapsed.