Search

found 7165 results

Images, eqnz.chch.2010

The USAR [Urban Search and Rescue] Teams wrote their findings on the doors when they finished their search of a building. This building was cleared by a team from Queensland, Australia on 27 February 2011.

Videos, UC QuakeStudies

A video showing members of the SPCA standing for two minutes in silence a week after the 22 February 2011 earthquake, in memory of those who lost their lives. A pigeon, found in the ChristChurch Cathedral after the quakes, is released at the end of the two-minutes' silence.

Images, Alexander Turnbull Library

Several volunteers work amongst the ruins of a building. A woman nearby weeps and the man comforting her comments 'and to think we believed sports stars were our national heroes'. Context - on 22 February 2011 a 6.3 magnitude earthquake struck in Christchurch which has probably killed more than 200 people (at this point the number is still not known) and caused very severe damage. There has been enormous praise for the efforts of many ordinary people who have shown courage in the catastrophe. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Text reads 'Earthquake survivors' and amongst the rubble of a collapsed building is a man representing 'courage' who is trapped by a concrete slab and a woman with severed legs who is reaching out to help him and who represents 'compassion'. Context - The very severe Christchurch earthquake of 22 February 2011 in which probably more than 200 people died and an enormous amount of structural damage has been done. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A man sits at his desk with an enormous sheet of blank paper headed 'New Christchurch' before him; peering over his shoulder is a huge figure who appears to be a man from an earlier era of the history of Christchurch. Context - Christchurch earthquake of 22 February 2011 and the start of debate about how city should be rebuilt. The historic man suggests a strong pull to preserve historic Christchurch. Colour and black and white versions available Quantity: 2 digital cartoon(s).

Images, Alexander Turnbull Library

In the top two frames a man discovers a pile of stinking bones and scratches his head in puzzlement; he is pleased when a second man rushes towards him with another bone which, in the lower frame, he proceeds to try to fit together with a bone from the original stack. The second man then realizes that the dinosaur from which he took the bone is starting to shudder and quake. Context - This is a metaphor about the rebuilding the city of Christchurch after the earthquake of 22 February 2011. Debates are beginning about the preserving or knocking down of historic buildings as well as the rebuilding or repairing of houses. Colour and black and white versions available Quantity: 2 digital cartoon(s).

Images, Alexander Turnbull Library

Caricature of Mayor Bob Parker dissolving into quakes; below the image is the name 'Christchurch' in very quavery letters. A second version shows Bob Parker without the shakes and without the name 'Christchurch'. Context - Opinion seems to be that Mayor Bob Parker has shown excellent leadership during the earthquakes and aftershocks in Christchurch. The earthquakes were on 4 September and 22 February. Two versions of this cartoon are available Quantity: 2 digital cartoon(s).

Images, Alexander Turnbull Library

Orana Wildlife Park 'lodge' sleeps passengers from Christchurch airport with no accommodation and who would otherwise sleep at the terminal. The Park staff think that 'they get free accommodation and we have a new paying exhibit!' They have also put up a notice: 'Cheapskates - Do not feed'. Is this a solution to airport 'night kippers'? The shortage of accommodation in Christchurch due to earthquake damage led many air travellers to sleep overnight at the air terminal. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A Christchurch seismic monitor churns out reams of paper with wild fluctuations showing earthquakes and aftershocks. Nearby two men examine a second monitor and one of them says 'This one's connected to Gerry Brownlee!' The reams of paper show a perfectly straight line - it appears that nothing is going on in Gerry Brownlee's head. Context - A sense that the Minister for Earthquake Recovery is being less than effective. Colour and black and white versions available Quantity: 2 digital cartoon(s).

Images, Alexander Turnbull Library

A female bartender chats with a customer as she pours his beer. She asks him about his jersey, saying 'That's not one of those expensive Adidas jerseys is it?' and he replies 'No - it's a Christchurch "After the quake" jersey!' The jersey has on the front three rectangular shapes that are tipping over. Context: Adidas has been at the centre of a jersey-pricing storm since it was revealed the replica tops could be bought much cheaper overseas. The jersey had been listed for sale at $US79.99 ($NZ92.68) on the US website worldrugbyshop.com and could also be found cheaper on British websites. It was retailing for $220 in New Zealand, but retailers have dropped the price as the debate has raged. Adidas has refused to drop the wholesale price. Colour and black and white versions available Quantity: 2 digital cartoon(s).

Research Papers, Lincoln University

High rise developments dominate skylines and are contentious in many low rise urban environments. Christchurch is no exception and its residents have historically been vocal in articulating their opinions on matters they care about, especially in regard to projects they perceive will ruin their ‘garden city’. At the turn of the millennium, developers were preparing yet another proposal which would get the tongues wagging in Christchurch with the development of the former Ferrymead Tavern site on Ferry Road. The planning process was a long and antagonistic one with many individuals viewing the built towers with a look of ‘disgust’ and discontent. In an ironic twist, the seismic activity in Christchurch over the last few years which has had major implications for a range of planning issues, incrementally led to the death of highly controversial Ferrymead ‘Water’s Edge’ Apartments.

Research Papers, Lincoln University

The Project Team were: Simon Wallace (TIA), David Simmons (Lincoln University), Susanne Becken (Lincoln University)The State of the Tourism Sector report is published annually.The Tourism Industry Association of New Zealand’s (TIA) annual State of the Sector 2011 has been prepared in partnership with Lincoln University. The objective of this is to understand better how the tourism sector sees its future and what challenges and opportunities lie ahead in both the short and longer term. State of Sector 2011, alongside the ongoing series of TIA Insights and other consultations that TIA is undertaking in its research work programme, is aimed at informing participants at the Tourism Summit taking place in Wellington on 13 July 2011. This information is a key driver in assisting with the development of the 2011 Tourism Industry Election Manifesto. State of the Sector 2011 also ultimately provides a current view of the tourism sector for those within the industry and for external stakeholders who have an interest in tourism in New Zealand.

Images, Alexander Turnbull Library

Text reads 'City's old chimneys are considered the no. 1 earthquake danger'. Below are several angry-looking chimneys which sing 'Chim chim-in-ey. Chim chim-in-ey, chim chim cher-oo! When the big shake's on - we're coming to get you!' Context - Invercargill City council building services manager Simon Tonkin has seen first-hand the massive damage falling chimneys inflicted on homes and nearby vehicles following the massive Christchurch quake, and says that Invercargill's old brick chimneys are the No1 danger to the city's residents and homes if a major earthquake strikes and should be removed if they are not being used. (Southland Times 6 April 2011) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The timeliness and quality of recovery activities are impacted by the organisation and human resourcing of the physical works. This research addresses the suitability of different resourcing strategies on post-disaster demolition and debris management programmes. This qualitative analysis primarily draws on five international case studies including 2010 Canterbury earthquake, 2009 L’Aquila earthquake, 2009 Samoan Tsunami, 2009 Victorian Bushfires and 2005 Hurricane Katrina. The implementation strategies are divided into two categories: collectively and individually facilitated works. The impacts of the implementation strategies chosen are assessed for all disaster waste management activities including demolition, waste collection, transportation, treatment and waste disposal. The impacts assessed include: timeliness, completeness of projects; and environmental, economic and social impacts. Generally, the case studies demonstrate that detritus waste removal and debris from major repair work is managed at an individual property level. Debris collection, demolition and disposal are generally and most effectively carried out as a collective activity. However, implementation strategies are affected by contextual factors (such as funding and legal constraints) and the nature of the disaster waste (degree of hazardous waste, geographical spread of waste etc.) and need to be designed accordingly. Community involvement in recovery activities such as demolition and debris removal is shown to contribute positively to psychosocial recovery.

Research papers, University of Canterbury Library

Disaster recovery is significantly affected by funding availability. The timeliness and quality of recovery activities are not only impacted by the extent of the funding but also the mechanisms with which funding is prioritised, allocated and delivered. This research addresses the impact of funding mechanisms on the effectiveness and efficiency of post-disaster demolition and debris management programmes. A qualitative assessment of the impacts on recovery of different funding sources and mechanisms was carried out, using the 2010 Canterbury Earthquake as well as other recent international events as case studies. The impacts assessed include: timeliness, completeness, environmental, economic and social impacts. Of the case studies investigated, the Canterbury Earthquake was the only disaster response to rely solely on a privatised approach to insurance for debris management. Due to the low level of resident displacement and low level of hazard in the waste, this was a satisfactory approach, though not ideal. This approach has led to greater organisational complexity and delays. For many other events, the potential community wide impacts caused by the prolonged presence of disaster debris means that publicly funded and centrally facilitated programmes appear to be the most common and effective method of managing disaster waste.

Research papers, University of Canterbury Library

As the result of the September 4th 2010 Canterbury earthquake and associated aftershocks on February 22nd 2011 and June 13th 2011, final examinations in the two 100 level economics papers at Canterbury University were cancelled at short notice in semester one 2011. The final examination weightings were spread over the remaining assessments to obtain a final grade for students. This paper attempts to establish how different online assessment conditions affect final grade distributions when online assessments are substituted for an invigilated final examination. Pearson correlation coefficients and Spearman rank order correlation coefficients are used to show that there is a greater correlation between online quizzes and invigilated assessments when those quizzes are only available for a restricted period of time, compared to the whole semester. We find that online quizzes are more closely correlated with invigilated assessments when the first attempt at a quiz is recorded, as opposed to the highest of two attempts. We also find that using the first attempt leads to less grade disruption when compared to a “normal” semester that includes a final examination. Finally, the actual impact on student grades when online quizzes are substituted for a final examination is discussed.

Research papers, University of Canterbury Library

The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.

Research papers, University of Canterbury Library

An extensive research program is on-going at the University of Canterbury, New Zealand to develop new technologies to permit the construction of multi-storey timber buildings in earthquake prone areas. The system combines engineered timber beams, columns and walls with ductile moment resisting connections using post-tensioned tendons and eventually energy dissipaters. The extensive experimental testing on post-tensioned timber building systems has proved a remarkable lateral response of the proposed solutions. A wide number of post-tensioned timber subassemblies, including beam-column connections, single or coupled walls and column-foundation connections, have been analysed in static or quasi-static tests. This contribution presents the results of the first dynamic tests carried out with a shake-table. Model frame buildings (3-storey and 5-storey) on one-quarter scale were tested on the shake-table to quantify the response of post-tensioned timber frames during real-time earthquake loading. Equivalent viscous damping values were computed for post-tensioned timber frames in order to properly predict their response using numerical models. The dynamic tests were then complemented with quasi-static push and pull tests performed to a 3-storey post-tensioned timber frame. Numerical models were included to compare empirical estimations versus dynamic and quasi-static experimental results. Different techniques to model the dynamic behaviour of post-tensioned timber frames were explored. A sensitivity analysis of alternative damping models and an examination of the influence of designer choices for the post-tensioning force and utilization of column armouring were made. The design procedure for post-tensioned timber frames was summarized and it was applied to two examples. Inter-storey drift, base shear and overturning moments were compared between numerical modelling and predicted/targeted design values.

Research papers, University of Canterbury Library

Extended Direct Analysis (EDA), developed at the University of Canterbury, is an advance on the AISC Direct Analysis method for the analysis of frames subjected to static forces. EDA provides a faster, simple and more rational way to properly consider the second-order effects, initial residual stresses (IRS) and the initial imperfections or steel structures under one directional loading than conventional analysis methods. This research applied the EDA method to quantify the effect of member overstrength on frame behaviour for a single storey frame. Also, the effects of IRS, which were included in the EDA static analysis, but which are not considered explicitly in non-linear seismic analysis, were evaluated in two ways. Firstly, they were considered for simple structures subject to increasing cyclic displacement in different directions. Secondly, incremental dynamic analysis with realistic ground motion was used to quantify the likely effect of IRS in earthquakes. It was found that, contrary to traditional wisdom and practice, greater member strengths can result in lower frame strengths for frames under monotonic lateral loading. The structural lateral capacity of the overstrength case was reduced by 6% compared to the case using the dependable member strengths. Also, it resulted significantly different in member demands. Therefore, it is recommended that when either plastic analysis or EDA is used, that both upper and lower bounds on the likely member strength should be considered to determine the total frame strength and the member demands. Results of push-pull analysis under displacement control showed that for IRS ratio, gamma < 0.5 and axial compressive force ratio, N*/Ns, up to 0.5, IRS did affect the structural behaviour in the first half cycle. However, the behavior in the later cycles was not significantly affected. It also showed that the effect of initial residual stresses in the frame was less significant than for the column alone when the column was subjected to similar axial compressive force. The incremental dynamic analysis results from both cantilever column and the three-storey steel frame showed that by increasing gamma = 0 to 0.5, the effect of IRS on seismic responses, based on the 50% confidence level, was less than 3% for N*/Ns, up to 0.5.

Research papers, University of Canterbury Library

The seismic response of unreinforced masonry (URM) buildings, in both their as-built or retrofitted configuration, is strongly dependent on the characteristics of wooden floors and, in particular, on their in-plane stiffness and on the quality of wall-to-floor connections. As part of the development of alternative performance-based retrofit strategies for URM buildings, experimental research has been carried out by the authors at the University of Canterbury, in order to distinguish the different elements contributing to the whole diaphragm's stiffness. The results have been compared to the ones predicted through the use of international guidelines in order to highlight shortcomings and qualities and to propose a simplified formulation for the evaluation of the stiffness properties.

Research papers, University of Canterbury Library

Using case studies from the 2010-2011 Canterbury, New Zealand earthquake sequence, this study assesses the accuracies of paleoliquefaction back-analysis methods and explores the challenges, techniques, and uncertainties associated with their application. While liquefaction-based back-analyses have been widely used to estimate the magnitudes of paleoearthquakes, their uncertain efficacies continue to significantly affect the computed seismic hazard in regions where they are relied upon. Accordingly, their performance is evaluated herein using liquefaction data from modern earthquakes with known magnitudes. It is shown that when the earthquake source location and mechanism are known, back-analysis methods are capable of accurately deriving seismic parameters from liquefaction evidence. However, because the source location and mechanism are often unknown in paleoseismic studies, and because accurate interpretation is shown to be more difficult in such cases, new analysis techniques are proposed herein. An objective parameter is proposed to geospatially assess the likelihood of any provisional source location, enabling an analyst to more accurately estimate the magnitude of a liquefaction-inducing paleoearthquake. This study demonstrates the application of back-analysis methods, provides insight into their potential accuracies, and provides a framework for performing paleoliquefaction analyses worldwide.

Research papers, University of Canterbury Library

Since the early 1980s seismic hazard assessment in New Zealand has been based on Probabilistic Seismic Hazard Analysis (PSHA). The most recent version of the New Zealand National Seismic Hazard Model, a PSHA model, was published by Stirling et al, in 2012. This model follows standard PSHA principals and combines a nation-wide model of active faults with a gridded point-source model based on the earthquake catalogue since 1840. These models are coupled with the ground-motion prediction equation of McVerry et al (2006). Additionally, we have developed a time-dependent clustering-based PSHA model for the Canterbury region (Gerstenberger et al, 2014) in response to the Canterbury earthquake sequence. We are now in the process of revising that national model. In this process we are investigating several of the fundamental assumptions in traditional PSHA and in how we modelled hazard in the past. For this project, we have three main focuses: 1) how do we design an optimal combination of multiple sources of information to produce the best forecast of earthquake rates in the next 50 years: can we improve upon a simple hybrid of fault sources and background sources, and can we better handle the uncertainties in the data and models (e.g., fault segmentation, frequency-magnitude distributions, time-dependence & clustering, low strain-rate areas, and subduction zone modelling)? 2) developing revised and new ground-motion predictions models including better capturing of epistemic uncertainty – a key focus in this work is developing a new strong ground motion catalogue for model development; and 3) how can we best quantify if changes we have made in our modelling are truly improvements? Throughout this process we are working toward incorporating numerical modelling results from physics based synthetic seismicity and ground-motion models.

Research papers, University of Canterbury Library

Recent experiences from the Darfield and Canterbury, New Zealand earthquakes have shown that the soft soil condition of saturated liquefiable sand has a profound effect on seismic response of buildings, bridges and other lifeline infrastructure. For detailed evaluation of seismic response three dimensional integrated analysis comprising structure, foundation and soil is required; such an integrated analysis is referred to as Soil Foundation Structure Interaction (SFSI) in literatures. SFSI is a three-dimensional problem because of three primary reasons: first, foundation systems are three-dimensional in form and geometry; second, ground motions are three-dimensional, producing complex multiaxial stresses in soils, foundations and structure; and third, soils in particular are sensitive to complex stress because of heterogeneity of soils leading to a highly anisotropic constitutive behaviour. In literatures the majority of seismic response analyses are limited to plane strain configuration because of lack of adequate constitutive models both for soils and structures, and computational limitation. Such two-dimensional analyses do not represent a complete view of the problem for the three reasons noted above. In this context, the present research aims to develop a three-dimensional mathematical formulation of an existing plane-strain elasto-plastic constitutive model of sand developed by Cubrinovski and Ishihara (1998b). This model has been specially formulated to simulate liquefaction behaviour of sand under ground motion induced earthquake loading, and has been well-validated and widely implemented in verifcation of shake table and centrifuge tests, as well as conventional ground response analysis and evaluation of case histories. The approach adopted herein is based entirely on the mathematical theory of plasticity and utilises some unique features of the bounding surface plasticity formalised by Dafalias (1986). The principal constitutive parameters, equations, assumptions and empiricism of the existing plane-strain model are adopted in their exact form in the three-dimensional version. Therefore, the original two-dimensional model can be considered as a true subset of the three-dimensional form; the original model can be retrieved when the tensorial quantities of the three dimensional version are reduced to that of the plane-strain configuration. Anisotropic Drucker-Prager type failure surface has been adopted for the three-dimensional version to accommodate triaxial stress path. Accordingly, a new mixed hardening rule based on Mroz’s approach of homogeneous surfaces (Mroz, 1967) has been introduced for the virgin loading surface. The three-dimensional version is validated against experimental data for cyclic torsional and triaxial stress paths.

Research papers, University of Canterbury Library

Drywalls are the typical infill or partitions used in new structures. They are usually located within structural frames and/or between upper and lower floor slabs in buildings. Due to the materials used in their construction, unlike masonry blocks, they can be considered as light non-structural infill/partition walls. These types of walls are especially popular in New Zealand and the USA. In spite of their popularity, little is known about their in-plane cyclic behaviour when infilled within a structural frame. The cause of this lack of knowledge can be attributed to the typical assumption that they are weak non-structural elements and are not expected to interact with the surrounding structural system significantly. However, recent earthquakes have repeatedly shown that drywalls interact with the structure and suffer severe damage at very low drift levels. In this paper, experimental test results of two typical drywall types (steel and timber framed) are reported in order to gather further information on; i) their reverse cyclic behaviour, ii) inter-storey drift levels at which they suffer different levels of damage, iii) the level of interaction with the surrounding structural frame system. The drywall specimens were tested using quasi-static reverse cyclic testing protocols within a full scale precast RC frame at the Structures Laboratory of the University of Canterbury.

Research papers, University of Canterbury Library

Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.