Search

found 695 results

Research papers, The University of Auckland Library

This thesis explores the intricate relationship between dance and trauma, focusing on how embodied practices facilitate psychological recovery. Dominant narratives often prioritise cognitive experiences, limiting our understanding of healing. By employing a qualitative, post-positivist and critical autoethnographic approach, I reflect on my journey through trauma following the Christchurch earthquakes, utilising journal entries from the point of view of my younger self to illustrate the transformative power of movement and dance. The key themes of this research are structure and routine, socialisation, and alleviation of anxious thoughts, demonstrating how engaging with the body challenges conventional notions of recovery. Furthermore, it highlights the complementary role of Dance Movement Therapy in trauma- informed practices, advocating for a holistic approach that recognises the mind-body connection. The findings underscore the necessity of viewing trauma as an embodied experience and propose a shift toward movement-based therapeutic practices that empower individuals through their lived experiences. Ultimately, this research calls for reimagining therapeutic frameworks, emphasising dance's potential to complement current trauma- informed therapies and promote a bottom-up approach to recovery.

Research papers, University of Canterbury Library

Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.

Research papers, The University of Auckland Library

This thesis aims to find a new weld sizing criterion for the steel construction industry in New Zealand. Current standards, such as NZS 3404, ANSI/AISC 360-16, and Eurocode 3 use a factor of 0.6 to calculate weld capacity from the weld metal’s ultimate tensile strength (UTS). This difference between weld capacity and UTS is thought to have arisen from the need for a large factor of safety to ensure welds perform correctly during an earthquake. The events in Christchurch proved that this criterion was able to work as intended. Several papers have been published by P. Dong from University of Michigan, and alongside other researchers, they investigate a new definition of weld shear strength by using a traction stress-based method. This new method not only allows realistic angles of weld fracture to be investigated, but also different weld geometries such as partial penetration butt welds. Ongoing research at HERA is showing how this welding technique is a more economical option than larger fillet welds with similar performance. For this thesis a range of sample types were statically tested until failure. UTS of several weld metals was found and then compared with transverse shear results to see if 0.6 is indeed correct. It was found that if the results from the standardized transverse shear samples was used, this ratio could be increased to 1.0. But if the results from cruciform joint samples was used, which still load the weld in a transverse direction but with a higher stress concentration, required the ratio to be 0.8 for welds that could be welded with a single pass, and decreased further to 0.75 for large welds with 3 passes. Two types of partial penetration butt weld (PPBW) geometries were compared to a comparatively sized fillet weld. These tests showed the PPBWs were the best performers, with all PPBWs surviving testing compared to only 33% of fillet welds.

Research papers, University of Canterbury Library

Following the Canterbury earthquake sequence of 2010-11, a large and contiguous tract of vacated ‘red zoned’ land lies alongside the lower Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). This is the second report in the Ecological Regeneration Options (ERO) project that addresses future land uses in the AORZ. The purpose of this report is to present results from an assessment of restoration opportunities conducted in April 2017. The objectives of the assessment were to identify potential benefits of ecological restoration activities across both land and water systems in the AORZ and characterise the key options for their implementation. The focus of this report is not to provide specific advice on the methods for achieving specific restoration endpoints per se. This will vary at different sites and scales with a large number of combinations possible. Rather, the emphasis is on providing an overview of the many restoration and regeneration options in their totality across the AORZ. An additional objective is to support their adequate assessment in the identification of optimum land uses and adaptive management practices for the AORZ. Participatory processes may play a useful role in assessment and stakeholder engagement by providing opportunities for social learning and the co-creation of new knowledge. We used a facilitated local knowledge based approach that generated a large quantity of reliable and site specific data in a short period of time. By inviting participation from a wide knowledge-holder network inclusivity is improved in comparison to small-group expert panel approaches. Similar approaches could be applied to other information gathering and assessment needs in the regeneration planning process. Findings from this study represent the most comprehensive set of concepts available to date to address the potential benefits of ecological regeneration in the AORZ. This is a core topic for planning to avoid missed opportunities and opportunity costs. The results identify a wide range of activities that may be applied to generate benefits for Christchurch and beyond, all involving aspects of a potential new ecology in the AORZ. These may be combined at a range of scales to create scenarios, quantify benefits, and explore the potential for synergies between different land use options. A particular challenge is acquiring the information needed within relatively short time frames. Early attention to gathering baseline data, addressing technical knowledge gaps, and developing conceptual frameworks to account for the many spatio-temporal aspects are all key activities that will assist in delivering the best outcomes. Methodologies by which these many facets can be pulled together in quantitative and comparative assessments are the focus of the final report in the ERO series.

Images, UC QuakeStudies

A photograph captioned by BeckerFraserPhotos, "The demolition site of the Press building and Warners Hotel in Cathedral Square. The site has now been filled and compressed so that it provides a much pleasanter environment. From here, there is now a marvellous view of the Heritage Apartments building, which allows us a wider perspective of the building than was possible before".

Images, UC QuakeStudies

A photograph of Wharetiki on Colombo Street. A temporary fence made out of wooden slats, plastic netting, and safety tape has been constructed in front of the property. USAR codes have been spray-painted on one of the front windows and a red sticker has been placed on the front door. The red sticker indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A photograph of the earthquake damage to The Volcano Café on London Street. The brick wall on the left side of the building has crumbled, and the bricks have spilt onto the footpath. A red sticker on the door indicates that the building is no longer safe to enter. Plywood has been used to board up the windows and wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Iconic bar on the corner of Manchester and Gloucester Streets. Large sections of the outer walls have collapsed, the bricks and masonry spilling onto the footpath below, crushing several cars. USAR codes have been spray-painted near the door and a red sticker has been taped above. The red sticker indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A photograph of artworks on the wall of a building between New Brighton Mall and Beresford Street. The artwork in the middle depicts a range of native birds. To the left, a section of another artwork shows a hei matau and a jester holding a sign that reads, "Nothing about us without us!". To the right there is a landscape with a message written over it.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team climbing a ladder up the back of a house on Gloucester Street. The ladder has been placed against the house so that the ERT members can enter the building through the open window. To the right a section of the house next door has collapsed and the bricks have spilled onto the shed below.

Images, UC QuakeStudies

A photograph of artworks on the wall of a building between New Brighton Mall and Beresford Street. The artwork in the middle depicts a range of native birds. To the left, a section of another artwork shows a hei matau and a jester holding a sign that reads, "Nothing about us without us!". To the right there is a landscape with a message written over it.

Research papers, Victoria University of Wellington

On the 22nd of February, 2011 the city of Christchurch, New Zealand was crippled by a colossal earthquake. 185 people were killed, thousands injured and what remained was a city left in destruction and ruin. Thousands of Christchurch properties and buildings were left damaged beyond repair and the rich historical architecture of the Canterbury region had suffered irreparably.  This research will conduct an investigation into whether the use of mixed reality can aid in liberating Christchurch’s rich architectural heritage when applied to the context of destructed buildings within Christchurch.  The aim of this thesis is to formulate a narrative around the embodiment of mixed reality when subjected to the fragmentary historical architecture of Christchurch. Mixed reality will aspire to act as the defining ligature that holds the past, present and future of Christchurch’s architectural heritage intact as if it is all part of the same continuum.  This thesis will focus on the design of a memorial museum within a heavily damaged historical trust registered building due to the Christchurch earthquake. It is important and relevant to conceive the idea of such a design as history is what makes everything we know. The memories of the past, the being of the now and the projection of the future is the basis and fundamental imperative in honouring the city and people of Christchurch. Using the technologies of Mixed Reality and the realm of its counter parts the memorial museum will be a definitive proposition of desire in providing a psychological and physical understanding towards a better Christchurch, for the people of Christchurch.  This thesis serves to explore the renovation possibilities of the Canterbury provincial council building in its destructed state to produce a memorial museum for the Christchurch earthquake. The design seeks to mummify the building in its raw state that sets and develops the narrative through the spaces. The design intervention is kept at a required minimum and in doing so manifests a concentrated eloquence to the derelict space. The interior architecture unlocks the expression of history and time encompassed within a destructive and industrialised architectural dialogue. History is the inhabitant of the building, and using the physical and virtual worlds it can be set free.  This thesis informs a design for a museum in central Christchurch that celebrates and informs the public on past, present and future heritage aspects of Christchurch city. Using mixed reality technologies the spatial layout inside will be a direct effect of the mixed reality used and the exploration of the physical and digital heritage aspects of Christchurch. The use of technology in today’s world is so prevalent that incorporating it into a memorial museum for Christchurch would not only be interesting and exploratory but also offer a sense of pushing forward and striving beyond for a newer, fresher Christchurch. The memorial museum will showcase a range of different exhibitions that formulate around the devastating Christchurch earthquake. Using mixed reality technologies these exhibitions will dictate the spaces inside dependant on their various applications of mixed reality as a technology for architecture. Research will include; what the people of Canterbury are most dear to in regards to Christchurch’s historical environment; the use of mixed reality to visualise digital heritage, and the combination of the physical and digital to serve as an architectural mediation between what was, what is and what there could be.

Research papers, The University of Auckland Library

Mechanistic and scientific approaches to resilience assume that there is a “tipping point” at which a system can no longer absorb adversity; after this point, it is liable to collapse. Some of these perspectives, particularly those stemming from ecology and psychology, recognise that individuals and communities cannot be perpetually resilient without limits. While the resilience paradigm has been imported into the social sciences, the limits to resilience have often been disregarded. This leads to an overestimation of “human resourcefulness” within the resilience paradigm. In policy discourse, practice, and research, resilience seems to be treated as a “limitless” and human quality in which individuals and communities can effectively cope with any hazard at any time, for as long as they want and with any people. We critique these assumptions with reference to the recovery case in Ōtautahi Christchurch, Aotearoa New Zealand following the 2010-11 Canterbury earthquake sequence. We discuss the limits to resilience and reconceptualise resilience thinking for disaster risk reduction and sustainable recovery and development.

Research papers, The University of Auckland Library

The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.

Images, UC QuakeStudies

A photograph of the Townsend Telescope in the Observatory at the Christchurch Arts Centre. In the bottom right-hand corner of the photograph is a pulley for the telescope's clock drive. This is one of the pieces that went missing when the Observatory tower collapsed in the 22 February 2011 earthquake. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Country Theme store on the corner of Manchester and St Asaph Streets. Sections of the second storey walls have crumbled, and the bricks have fallen onto the footpath below. Wire fences have been placed around the building as a cordon. Red stickers on the front door and the wire fence indicate that the building is not safe to enter.

Images, UC QuakeStudies

A photograph of a make-shift toilet in the Christchurch Art Gallery. A sign behind it reads, "Portaloos Department. We know that 80,000 people need loos. We have 900-1800 available or coming, We don't need to be told people need loos. Thank you. We're number one with your number twos!". Signs below this read, "Toilet Occupied", "Toilet Vacant" and, "In Tray". The Art Gallery was used as the temporary headquarters for Civil Defence after the 22 February 2011 earthquake.

Images, eqnz.chch.2010

Yes, it was a joke. The tours, that is, not the yard filled with earthquake-caused sand volcanos. They were very real. You can see one covering the driveway in this photo. The signs read as follows. "Tours run 1/2 hourly. $5.25 admission. Eftpos unavailable." "If you think this is bad... you should see the back!"

Research papers, The University of Auckland Library

This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.

Research papers, University of Canterbury Library

This research aims to explore how business models of SMEs revolve in the face of a crisis to be resilient. The business model canvas was used as a tool to analyse business models of SMEs in Greater Christchurch. The purpose was to evaluate the changes SMEs brought in their business models after hit by a series of earthquake in 2010 and 2011. The idea was to conduct interviews of business owners and analyse using grounded theory methods. Because this method is iterative, a tentative theoretical framework was proposed, half way through the data collection. It was realised that owner specific characteristics were more prominent in the data than the elements business model. Although, SMEs in this study experienced several operational changes in their business models such as change of location and modification of payment terms. However, the suggested framework highlights how owner specific attributes influence the survival of a small business. Small businesses and their owners are extremely interrelated that the business models personify the owner specific characteristics. In other words, the adaptation of the business model reflects the extent to which the owner possess these attributes. These attributes are (a) Mindsets – the attitude and optimism of business owner; (b) Adaptive coping – the ability of business owner to take corrective actions; and (c) Social capital – the network of a business owner, including family, friends, neighbours and business partners.

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "Blue Lagoon Drive in Brooklands. The whole of this street is red zoned land. Some of the homeowners are unhappy with the land zoning as they believe that their area has much less impact from liquefaction than other red zoned areas. Some of the street lights are leaning, but the road seems in very good condition for a red zoned street and there is little evidence of liquefaction. Most red zoned streets have none of their original surface left, and the liquefaction is evident on all the verges and gardens".

Research papers, University of Canterbury Library

Many buildings with relatively low damage from the 2010-2011 Canterbury were deemed uneconomic to repair and were replaced [1,2]. Factors that affected commercial building owners’ decisions to replace rather than repair, included capital availability, uncertainty with regards to regional recovery, local market conditions and ability to generate cash flow, and repair delays due to limited property access (cordon). This poster provides a framework for modeling decision-making in a case where repair is feasible but replacement might offer greater economic value – a situation not currently modeled in engineering risk analysis.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape, a road cone and saw horses have been used to cordon off the house.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team standing in front of the earthquake-damaged Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have warped, breaking the glass. USAR codes have been spray-painted on one of the columns. A red sticker taped to the door indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team standing in front of the earthquake-damaged Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have also warped, breaking the glass. USAR codes have been spray-painted on one of the columns. A red sticker taped to the door indicates that the building is unsafe to enter.

Research papers, The University of Auckland Library

Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.

Research papers, The University of Auckland Library

Soil-structure interaction (SSI) has been widely studied during the last decades. The influence of the properties of the ground motion, the structure and the soil have been addressed. However, most of the studies in this field consider a stand-alone structure. This assumption is rarely justifiable in dense urban areas where structures are built close to one another. The dynamic interaction between adjacent structures has been studied since the early 1970s, mainly using numerical and analytical models. Even though the early works in this field have significantly contributed to understanding this problem, they commonly consider important simplifications such as assuming a linear behaviour of the structure and the soil. Some experimental works addressing adjacent structures have recently been conducted using geotechnical centrifuges and 1g shake tables. However, further research is needed to enhance the understanding of this complex phenomenon. A particular case of SSI is that of structures founded in fine loose saturated sandy soil. An iconic example was the devastating effects of liquefaction in Christchurch, New Zealand, during the Canterbury earthquake in 2011. In the case of adjacent structures on liquefiable soil, the experimental evidence is even scarcer. The present work addresses the dynamic interaction between adjacent structures by performing multiple experimental studies. The work starts with two-adjacent structures on a small soil container to expose the basics of the problem. Later, results from tests considering a more significant number of structures on a big laminar box filled with sand are presented. Finally, the response of adjacent structures on saturated sandy soil is addressed using a geotechnical centrifuge and a large 1g shake table. This research shows that the acceleration, lateral displacement, foundation rocking, damping ratio, and fundamental frequency of the structure of focus are considerably affected by the presence of neighbouring buildings. In general, adjacent buildings reduced the dynamic response of the structure of focus on dry sand. However, the acceleration was amplified when the structures had a similar fundamental frequency. In the case of structures on saturated sand, the presence of adjacent structures reduced the liquefaction potential. Neighbouring structures on saturated sand also presented larger rotation of the footing and lateral displacement of the top mass than that of the stand-alone case.

Articles, UC QuakeStudies

A copy of a letter from Seamus O'Cromtha which was sent to the Chief Executive of the Ministry of Business, Innovation and Employment (MBIE) on 3 September 2016. The letter was sent on behalf of Empowered Christchurch. In the letter, O'Cromtha calls on the Chief Executive to instruct the Christchurch City Council to stop issuing building consents in areas such as the Avon River floodplain until stop banks have been erected along the river. O'Cromtha comments, "Properties that should be protected by stop banks currently have no protection against flooding".

Images, UC QuakeStudies

The University of Canterbury's E-Learning team's temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. My desk. I hope to get blinds to cover this internal window. Later - blinds are not allowed, so I rotated the desk 180 degrees. My back is now facing the window, but I'm far enough away that people won't be able to read my screens - and I don't have to look at people looking at me".