Search

found 1373 results

Images, UC QuakeStudies

The stitching of felt hearts on the anniversary of the first earthquake on the site of the demolished Ground Culinary Centre, which is now the Lyttelton Petanque Club grounds, a gathering spot for many community events and activities.

Research papers, University of Canterbury Library

New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance. However, poor performance was reported in terms of their seismic resilience. Although numerous innovative methods to mitigate damage have been introduced to the New Zealand community in order to improve wooden house performance, these retrofit options have not been readily taken up. The low number of retrofitted wooden-framed houses leads to questions about whether homeowners are aware of the necessity of seismic retrofitting their houses to achieve a satisfactory seismic performance. This study aims to explore different retrofit technologies that can be applied to wooden-framed houses in Wellington, taking into account the need of homeowners to understand the risk, likelihood and extent of damage expected after an event. A survey will be conducted in Wellington about perceptions of homeowners towards the expected performance of their wooden-framed houses. The survey questions were designed to gain an understanding of homeowners' levels of safety and awareness of possible damage after a seismic event. Afterwards, a structural review of a sample of the houses will be undertaken to identify common features and detail potential seismic concerns. The findings will break down barriers to making improvements in the performance of wooden-framed houses and lead to enhancements in the confidence of homeowners in the event of future seismic activity. This will result in increased understanding and contribute towards an accessible knowledge base, which will possibly increase significantly the use of these technologies and avoid unnecessary economic and social costs after a seismic event.

Research papers, University of Canterbury Library

This study explicitly investigates uncertainties in physics-based ground motion simulation validation for earthquakes in the Canterbury region. The simulations utilise the Graves and Pitarka (2015) hybrid methodology, with separately quantified parametric uncertainties in the comprehensive physics and simplified physics components of the model. The study is limited to the simulation of 148 small magnitude (Mw 3.5 – 5) earthquakes, with a point source approximation for the source rupture representations, which also enables a focus on a small number of relevant uncertainties. The parametric uncertainties under consideration were selected through sensitivity analysis, and specifically include: magnitude, Brune stress parameter and high frequency rupture velocity. Twenty Monte Carlo realisations were used to sample parameter uncertainties for each of the 148 events. Residuals associated with the following intensity measures: spectral acceleration, peak ground velocity, arias intensity and significant duration, were ascertained. Using these residuals, validation was performed through assessment of systematic biases in site and source terms from mixed-effects regression. Based on the results to date, initial standard deviation recommendations for parameter uncertainties, based on the Canterbury simulations have been obtained. This work ultimately provides an initial step toward explicit incorporation of modelling uncertainty in simulated ground motion predictions for future events, which will improve the use of simulation models in seismic hazard analysis. We plan to subsequently assess uncertainties for larger magnitude events with more complex ruptures, and events across a larger geographic region, as well as uncertainties due to path attenuation, site effects, and more general model epistemic uncertainties.

Research papers, University of Canterbury Library

Research indicates that aside from the disaster itself, the next major source of adverse outcomes during such events, is from errors by either the response leader or organisation. Yet, despite their frequency, challenge, complexity, and the risks involved; situations of extreme context remain one of the least researched areas in the leadership field. This is perhaps surprising. In the 2010 and 2011 (Christchurch) earthquakes alone, 185 people died and rebuild costs are estimated to have been $40b. Add to this the damage and losses annually around the globe arising from natural disasters, major business catastrophes, and military conflict; there is certainly a lot at stake (lives, way of life, and our well-being). While over the years, much has been written on leadership, there is a much smaller subset of articles on leadership in extreme contexts, with the majority of these focusing on the event rather than leadership itself. Where leadership has been the focus, the spotlight has shone on the actions and capabilities of one person - the leader. Leadership, however, is not simply one person, it is a chain or network of people, delivering outcomes with the support of others, guided by a governance structure, contextualised by the environment, and operating on a continuum across time (before, during, and after an event). This particular research is intended to examine the following: • What are the leadership capabilities and systems necessary to deliver more successful outcomes during situations of extreme context; • How does leadership in these circumstances differ from leadership during business as usual conditions; • Lastly, through effective leadership, can we leverage these unfortunate events to thrive, rather than merely survive?