Search

found 728 results

Research papers, University of Canterbury Library

Major earthquakes, such as the Canterbury and Kaikoura events recorded in New Zealand in 2010 and 2016 respectively, highlighted that floor systems can be heavily damaged. At a reduced or full scale, quasi-static experimental tests on structural sub-assemblies can help to establish the seismic performance of structural systems. However, the experimental performance obtained with such tests is likely to be dependent on the drift protocol adopted. This paper provides an overview of the drift protocols which have been assumed in previous relevant experimental activities, with emphasis on those adopted for testing floor systems. The paper also describes the procedure used to define the loading protocol applied in the testing of a large precast concrete floor diaphragm as part of the Recast floor project at the University of Canterbury. Finally, major limits of current loading protocols, and areas of future research, are identified.

Research papers, Victoria University of Wellington

We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity measured from space, and investigate whether insurance claim payments for damaged residential property affected the local recovery process. We focus on the destructive Christchurch earthquake of 2011 as our case study. In this event more than 95% of residential housing units were covered by insurance, but insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery and describe the recovery’s determinants. We also find that insurance payments contributed significantly to the process of economic recovery after the earthquake, but delayed payments were less affective and cash settlement of claims were more affective in contributing to local recovery than insurance-managed rebuilding.

Research papers, University of Canterbury Library

Rock mass defect controlled deep-seated landslides are widespread within the deeply incised landscapes formed in Tertiary soft rock terrain in New Zealand. The basal failure surfaces of deep-seated slope failures are defined by thin, comparatively weak and laterally continuous bedding parallel layers termed critical stratigraphic horizons. These horizons have a sedimentary origin and have typically experienced some prior tectonically induced shear displacement at the time of slope failure. The key controls on the occurrence and form of deep-seated landslides are considered in terms of rock mass defect properties and tectonic and climatic forcing. The selection of two representative catchments (in southern Hawke's Bay and North Canterbury) affected by tectonic and climatic forcing has shown that the spatial and temporal initiation of deep-seated bedrock landslides in New Zealand Tertiary soft rock terrain is a predictable rather than a stochastic process; and that deep-seated landslides as a mass wasting process have a controlling role in landscape evolution in many catchments formed in Tertiary soft rock terrain. The Ella Landslide in North Canterbury is a deep-seated (~85 m) translational block slide that has failed on a 5 - 10 mm thick, kaolinite-rich, pre-sheared critical stratigraphic horizon. The residual strength of this sedimentary horizon, (C'R 2.6 - 2.7 kPa, and Ѳ'R = 16 - 21°), compared to the peak strength of the dominant lithology (C' = 176 kPa, and Ѳ' = 37°) defines a high strength contrast in the succession, and therefore a critical location for the basal failure surface of deep-seated slope failures. The (early to mid Holocene) Ella Landslide debris formed a large landslide dam in the Kate Stream catchment and this has significantly retarded rates of mass wasting in the middle catchment. Numerical stability analysis shows that this slope failure would have most likely required the influence of earthquake induced strong ground motion and the event is tentatively correlated to a Holocene event on the Omihi Fault. The influence of this slope failure is likely to affect the geomorphic development of the catchment on a scale of 10⁴ - 10⁵ years. In deeply incised catchments at the southeastern margin of the Maraetotara Plateau, southern Hawke's Bay, numerous widespread deep-seated landslides have basal failure surfaces defined by critical stratigraphic horizons in the form of thin « 20 mm) tuffaceous beds in the Makara Formation flysch (alternating sandstone and mudstone units). The geometry of deep-seated slope failures is controlled by these regularly spaced (~70 m), very weak critical stratigraphic horizons (C'R 3.8 - 14.2 kPa, and Ѳ'R = 2 - 5°), and regularly spaced (~45 m) and steeply dipping (-50°) critical conjugate joint/fault sets, which act as slide block release surfaces. Numerical stability analysis and historical precedent show that the temporal initiation of deep-seated landslides is directly controlled by short term tectonic forcing in the form of periodic large magnitude earthquakes. Published seismic hazard data shows the recurrence interval of earthquakes producing strong ground motions of 0.35g at the study site is every 150 yrs, however, if subduction thrust events are considered the level of strong ground motion may be much higher. Multiple occurrences of deep-seated slope failure are correlated to failure on the same critical stratigraphic horizon, in some cases in three adjacent catchments. Failure on multiple critical stratigraphic horizons leads to the development of a "stepped" landscape morphology. This slope form will be maintained during successive accelerated stream incision events (controlled by long term tectonic and climatic forcing) for as long as catchments are developing in this specific succession. Rock mass defect controlled deep seated landslides are controlling catchment head progression, landscape evolution and hillslope morphology in the Hawke's Bay study area and this has significant implications for the development of numerical landscape evolution models of landscapes formed in similar strata. Whereas the only known numerical model to consider deep seated landslides as an erosion process (ZSCAPE) considers them as stochastic in time and space, this study shows that this could not be applied to a landscape where the widespread spatial occurrence of deep-seated landslides is controlled by rock mass defects. In both of the study areas for this project, and by implication in many catchments in Tertiary soft rock terrain, deep-seated landslides controlled by rock mass defect strength, spacing and orientation, and tectonic and climatic forcing have an underlying control on landscape evolution. This study quantifies parameters for the development of numerical landscape evolution models that would assess the role of specific parameters, such as uplift rates, incision rates and earthquake recurrence in catchment evolution in Tertiary soft rock terrain.

Research papers, University of Canterbury Library

The Porter's Pass-Amberley Fault Zone (PPAFZ) is a complex zone of anastomosing faults and folds bounding the south-eastern edge of the transition from subducting Pacific Plate to continental collision on the Australia Plate boundary. This study combines mapping of a 2000 km2 zone from the Southern Alps northeast to the coast near Amberley, 40 km north of metropolitan Christchurch, with an analysis of seismicity and a revision of regional seismic hazard. Three structural styles: 1) a western strike-slip, and 2) a more easterly thrust and reverse domain, pass into 3) a northwest verging fold belt on the northern Canterbury Plains, reflecting the structural levels exposed and the evolving west to east propagation. Basal remnants of a Late Cretaceous-Cenozoic, largely marine sedimentary cover sequence are preserved as outliers that unconformably overlie Mesozoic basement (greywacke and argillite of the Torlesse terrain) in the mountains of the PPAFZ and are underlain by a deeply leached zone which is widely preserved. Structure contouring of the unconformity surface indicates maximum, differential uplift of c.2600 m in the southwest, decreasing to c.1200 m in the coastal fold belt to the northeast. Much lower rates (or reversal) of uplift are evident a few kilometres southeast of the PPAFZ range-front escarpment. The youngest elements of the cover sequence are basement-derived conglomerates of Plio-Pleistocene age preserved on the SE margin. The source is more distant than the intervening mountains of the PPAFZ, probably from the Southern Alps, to the west and northwest. The absence of another regional unconformity on Mesozoic basement, older than Pleistocene, indicates that this uplift is post-Pliocene. Late Pleistocene(<100 kyr) differential uplift rates of c.0.5-2.7 m/kyr from uplifted marine terraces at the east coast, and rates of 2.5-3.3 m/kyr for tectonically-induced river-down cutting further west, suggest that uplift commenced locally during the last 1 Ma, and possibly within the last 0.5 Ma, if average rates are assumed to be uniform over time. Analysis of seismicity, recorded during a 10 week regional survey of micro earthquakes in 1990, identified two seismic zones beneath North Canterbury: 1) a sub-horizontal zone of activity restricted to the upper crust (≤12 km); and 2) a seismic zone in the lower crust (below a ceiling of ≤17 km), that broadens vertically to the north and northwest to a depth of c.40 km, with a bottom edge which dips 10°N and 15°NW, respectively. No events were recorded at depths between 12 km and 17 km, which is interpreted as a relatively aseismic, mid-crustal ductile layer. Marked differences (up to 60°) in the trend of strain axes for events above and below the inferred ductile layer are observed only north of the PPAFZ. A fundamental, north-to-south increase in the Wave-length of major geological structures occurs across the PPAFZ, and is interpreted as evidence that the upper crust beneath the Canterbury Plains is coupled to the lower crust, whereas the upper crust further north is not. Most of the recorded micro earthquakes <12 km deep beneath the PPAFZ have strike-slip mechanisms. It is probable that faults splay upward into the thrusts and folds at the surface as an evolving transpression zone in response to deep shear in basement. There have been no historic surface ruptures of the PPAFZ, but the zone has been characterised historically by frequent small earthquakes. Paleoseismic data (dated landslides and surface ruptures) compiled in this study, indicate a return period of 1500-1900 years between the last two M>7-7.5 earthquakes, and 500-700 years have elapsed since the last. The magnitudes of these events are estimated at c.M7.5, which represents a probable maximum magnitude for the PPAFZ. There are insufficient data to determine whether or not the frequency of large earthquakes conforms to a recognised model of behaviour, but comparison of the paleoseismic data with the historic record of smaller earthquakes, suggests that the magnitudes of the largest earthquakes in this zone are not exponentially distributed. A seismicity model for the PPAFZ (Elder et al., 1991) is reviewed, and a b-value of 1.0 is found to be consistent with the newly acquired paleoseismic data. This b-value reduces the predicted frequency of large earthquakes (M≥7.0) in this zone by a factor of 3.5, while retaining a conservative margin that allows for temporal variations in the frequency of large events and the possibility that the geological database is incomplete, suggesting grounds for revising the hazard model for Christchurch.

Videos, UC QuakeStudies

A video of a presentation by Dr Lesley Campbell during the Community and Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Canterbury Family Violence Collaboration: An innovative response to family violence following the Canterbury earthquakes - successes, challenges, and achievements".The abstract for this presentation reads as follows: Across a range of international jurisdictions there is growing evidence that shows a high prevalence of family violence, child abuse and sexual violence over a number of years following natural disasters (World Health Organisation, 2005). Such empirical findings were also reflected within the Canterbury region following the earthquake events in 2010 and 2011. For example, in the weekend following the September 2010 earthquake, Canterbury police reported a 53% increase in call-outs to family violence incidents. In 2012, Canterbury police investigated over 7,400 incidents involving family violence - approximately 19 incidents each day. Child, youth and family data also reflect an increase in family violence, with substantiated cases of abuse increasing markedly from 1,130 cases in 2009 to 1,650 cases in 2011. These numbers remain elevated. Challenging events like the Canterbury earthquakes highlight the importance of, and provide the catalyst for, strengthening connections with various communities of interest to explore new ways of responding to the complex issue of family violence. It was within this context that the Canterbury Family Violence Collaboration (Collaboration) emerged. Operating since 2012, the Collaboration now comprises 45 agencies from across governmental and non-governmental sectors. The Collaboration's value proposition is that it delivers system-wide responses to family violence that could not be achieved by any one agency. These responses are delivered within five strategic priority areas: housing, crisis response and intervention, prevention, youth, and staff learning and development. The purpose of this presentation is to describe the experiences of the collaborative effort and lessons learnt by the collaborative partners in the first three years after its establishment. It will explore the key successes and challenges of the collaborative effort, and outline the major results achieved - a unique contribution, in unique circumstances, to address family violence experienced by Canterbury people throughout the period of recovery and rebuild.

Research papers, University of Canterbury Library

The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.

Research papers, University of Canterbury Library

The extent of liquefaction in the eastern suburbs of Christchurch (Aranui, Bexley, Avonside, Avonhead and Dallington) from the February 22 2011 Earthquake resulted in extensive damage to in-ground waste water pipe systems. This caused a huge demand for portable toilets (or port-a-loos) and companies were importing them from outside Canterbury and in some instances from Australia. However, because they were deemed “assets of importance” under legislation, their allocation had to be coordinated by Civil Defence and Emergency Management (CDEM). Consequently, companies supplying them had to ignore requests from residents, businesses and rest homes; and commitments to large events outside of the city such as the Hamilton 400 V8 Supercars and the Pasifika Festival in Auckland were impacted. Frustrations started to show as neighbourhoods questioned the equity of the port-a-loos distribution. The Prime Minister was reported as reassuring citizens in the eastern suburbs in the first week of March that1 “a report about the distribution of port-a-loos and chemical toilets shows allocation has been fair. Key said he has asked Civil Defence about the distribution process and where the toilets been sent. He said there aren’t enough for the scale of the event but that is quickly being rectified and the need for toilets is being reassessed all the time.” Nonetheless, there still remained a deep sense of frustration and exclusion over the equity of the port-a-loos distribution. This study took the simple approach of mapping where those port-a-loos were on 11-12 March for several areas in the eastern suburbs and this suggested that their distribution was not equitable and was not well done. It reviews the predictive tools available for estimating damage to waste water pipes and asks the question could this situation have been better planned so that pot-a-loo locations could have been better prioritised? And finally it reviews the integral roles of communication and monitoring as part of disaster management strategy. The impression from this study is that other New Zealand urban centres could or would also be at risk and that work is need to developed more rational management approaches for disaster planning.

Research papers, Victoria University of Wellington

Architecture and music have a long intertwining history.These respective creative forces many times have collaborated into monumental place, harboured rich occasion, been catalyst for cultural movement and defined generations. Together they transcend their respective identities. From dinky local church to monstrous national stadia, together they are an intense concentration, a powerfully addictive dosage where architecture is the place, music is the faith, and people are the reason.  Music is a programme that architecture often celebrates in poetic and grand fashion; a superficial excuse to symbolise their creative parallels. But their relationship is much richer and holds more value than just the opportunity to attempt architectural metaphor.While music will always overshadow the architecture in the sense of a singular event, architecture is like the soundman behind the mixing desk. It’s not the star front and centre grabbing your attention, but is responsible for framing the star. It is the foundational backdrop, a critical pillar. Great architecture can help make great music. In this sense music is a communication of architecture, it is the ultimate creative function.  Christchurch, New Zealand, is a city whose story changed in an instant. The seismic events of 2010 and 2011 have become the overriding subject of its historical narrative, as it will be for years to come. Disaster redefines place (the town of Napier, struck by an earthquake in 1931, exemplifies this). There is no quantifiable justification for an exploration of architecture and music within the context of Christchurch. The Town Hall, one of New Zealand’s most architecturally significant buildings, is under repair. The Christ Church Cathedral will more than likely be rebuilt to some degree of its former self. But these are echoes of the city that Christchurch was.They are saved because they are artefact. Evidence of history.This thesis makes the argument for the new, the better than before, and for the making of opportunity from disaster, by proposing a ‘new’ town hall, conceived from the sound of old.

Research Papers, Lincoln University

While there are varying definitions of the term ‘social cohesion’, a number of common themes regularly surface to describe what cohesive societies look like. Previous studies using known indicators of social cohesion have often been conducted at the international level for cross-country comparison, while there has been less focus on social cohesion within countries. The purpose of this research is to identify if indicators of social cohesion can be used to map trends at the city level in order to draw meaningful conclusions, particularly in the aftermath of a natural disaster. Using known indicators of social cohesion and Christchurch City as the basis for this study, variations in social cohesion have been found within the city wards, that preceded but were affected by the events of the Canterbury earthquakes during 2010/11. These findings have significant policy implications for the future of Christchurch, as city leaders work towards the recovery of and subsequent rebuilding of communities.

Research papers, University of Canterbury Library

This paper examines the consistency of seismicity and ground motion models, used for seismic hazard analysis in New Zealand, with the observations in the Canterbury earthquakes. An overview is first given of seismicity and ground motion modelling as inputs of probabilistic seismic hazard analysis, whose results form the basis for elastic response spectra in NZS1170.5:2004. The magnitude of earthquakes in the Canterbury earthquake sequence are adequately allowed for in the current NZ seismicity model, however the consideration of ‘background’ earthquakes as point sources at a minimum depth of 10km results in up to a 60% underestimation of the ground motions that such events produce. The ground motion model used in conventional NZ seismic hazard analysis is shown to provide biased predictions of response spectra (over-prediction near T=0.2s , and under-predictions at moderate-to-large vibration periods). Improved ground motion prediction can be achieved using more recent NZ-specific models.

Research papers, University of Canterbury Library

Novel Gel-push sampling was employed to obtain high quality samples of Christchurch sands from the Central Business District, at sites where liquefaction was observed in 22 February 2011, and 13 June 2011 earthquakes. The results of cyclic triaxial testing on selected undisturbed specimens of typical Christchurch sands are presented and compared to empirical procedures used by practitioners. This comparison suggests cyclic triaxial data may be conservative, and the Magnitude Scaling Factor used in empirical procedures may be unconservative for highly compressible soils during near source moderate to low magnitude events. Comparison to empirical triggering curves suggests the empirical method generally estimates the cyclic strength of Christchurch sands within a reasonable degree of accuracy as a screening evaluation tool for liquefaction hazard, however for sands with moderate to high fines content it may be significantly unconservative, highlighting the need for high quality sampling and testing on important projects where seismic performance is critical.

Research papers, University of Canterbury Library

This paper presents the ongoing development of a new 3D seismic velocity model of Canterbury, New Zealand. The model explicitly represents the Canterbury sedimentary basin, and other significant geologic horizons, which are expected to have important implications on observed ground motions. The model utilizes numerous sources of data, including 3D regional tomography with a variable-depth inferred Moho, seismic reflection survey lines, geotechnical boreholes and well logs, spectral analysis of surface waves, and CPT logs which provide velocity constraints over their respective ranges of application. The model provides P- and S-wave velocity and density (i.e. Vp, Vs and p) over a grid of input points, and is presently being utilized in broadband ground motion simulations of the 2010-2011 Canterbury earthquakes. Comparison of simulated ground motions with those observed in the 2010-2011 Canterbury earthquakes will help provide a better understanding of the salient physical processes which characterized the unique set of strong ground motions recorded in this sequence of earthquake events.

Research papers, University of Canterbury Library

The Canterbury earthquakes, which involved widespread damage in the February 2011 event and ongoing aftershocks near the Christchurch central business district (CBD), presented decision-makers with many recovery challenges. This paper identifies major government decisions, challenges, and lessons in the early recovery of Christchurch based on 23 key-informant interviews conducted 15 months after the February 2011 earthquake. It then focuses on one of the most important decisions – maintaining the cordon around the heavily damaged CBD – and investigates its impacts. The cordon displaced 50,000 central city jobs, raised questions about (and provided new opportunities for) the long-term viability of downtown, influenced the number and practice of building demolitions, and affected debris management; despite being associated with substantial losses, the cordon was commonly viewed as necessary, and provided some benefits in facilitating recovery. Management of the cordon poses important lessons for planning for catastrophic urban earthquakes around the world.

Research papers, University of Canterbury Library

On February 22, 2011, Christchurch-based journalists were jolted out of their normal work routine by a large 6.3 magnitude earthquake that killed 185 people, wrecked the city and forced reporters to reappraise their journalism. This study considers how the earthquake affected journalists’ relationship to the community, their use of sources and news selection. A theory of collective trauma is used to explain the changes that journalists made to their reporting practice. Specifically, Christchurch journalists had a greater identification and attachment to their audience post-earthquake. Journalists viewed themselves as part of the earthquake story, which prompted them to view sources differently, use those sources differently and see advocacy as a keystone of their news work after the disaster. This study adds to a growing scholarship about journalists and trauma, but focuses on what the event meant for local reporters’ choice of sources and news selection rather than measuring rates of psychological distress.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Unreinforced masonry buildings also suffered extensive damage throughout the region. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. This paper summarizes the observations and preliminary findings from this early reconnaissance work.

Research papers, University of Canterbury Library

The aim of this study is to explore the main contributors and obstacles to employee learning in the context of an alliance using the framework of a complex embedded multiple-case study. The two participant alliance partner organisations (APOs) are natural competitors that have joined to respond to urgent community needs of the city of Christchurch following the major earthquakes in September 2010 and February 2011. At the moment of the in-depth interviews, it had been about four years since those events occurred. There are continuous, unexpected circumstances that still require attention. However, the alliance has an expiry date, thus reinforcing the uncertain work environment. The main enablers found were participative, collaborative learning encouraged by leaders who embraced the alliance’s “learning organisational culture”. Employees generated innovations mostly in social interaction with others, while taking on responsibility for their learning by learning from mistakes. The main obstacle found is competition, as inhibitor of collaboratively sharing their knowledge out of fear of losing their competitiveness.

Research papers, University of Canterbury Library

This paper presents an examination of ground motion observations from 20 near-source strong motion stations during the most significant 10 events in the 2010-2011 Canterbury earthquake to examine region-specific systematic effects based on relaxing the conventional ergodic assumption. On the basis of similar site-to-site residuals, surfical geology, and geographical proximity, 15 of the 20 stations are grouped into four sub-regions: the Central Business District; and Western, Eastern, and Northern suburbs. Mean site-to-site residuals for these sub-regions then allows for the possibility of non-ergodic ground motion prediction over these sub-regions of Canterbury, rather than only at strong motion station locations. The ratio of the total non-ergodic vs. ergodic standard deviation is found to be, on average, consistent with previous studies, however it is emphasized that on a site-by-site basis the non-ergodic standard deviation can easily vary by ±20%.

Research papers, University of Canterbury Library

The seismic performance and parameter identification of the base isolated Christchurch Women’s Hospital (CWH) building are investigated using the recorded seismic accelerations during the two large earthquakes in Christchurch. A four degrees of freedom shear model is applied to characterize the dynamic behaviour of the CWH building during these earthquakes. A modified Gauss-Newton method is employed to identify the equivalent stiffness and Rayleigh damping coefficients of the building. The identification method is first validated using a simulated example structure and finally applied to the CWH building using recorded measurements from the Mw 6.0 and Mw 5.8 Christchurch earthquakes on December 23, 2011. The estimated response and recorded response for both earthquakes are compared with the cross correlation coefficients and the mean absolute percentage errors reported. The results indicate that the dynamic behaviour of the superstructure and base isolator was essentially within elastic range and the proposed shear linear model is sufficient for the prediction of the structural response of the CWH Hospital during these events.

Research papers, University of Canterbury Library

In this paper, we perform hybrid broadband (0-10 Hz) ground motion simulations for the ten most significant events (Mw 4.7-7.1) in the 2010-2011 Canterbury earthquake sequence. Taking advantage of having repeated recordings at same stations, we validate our simulations using both recordings and an empirically-developed ground motion prediction equation (GMPE). The simulation clearly captures the sedimentary basin amplification and the rupture directivity effects. Quantitative comparisons of the simulations with both recordings and the GMPE, as well as analyses of the total residuals (indicating model bias) show that simulations perform better than the empirical GMPE, especially for long period. To scrutinize the ground motion variability, we partitioned the total residuals into different components. The total residual appears to be unbiased, and the use of a 3D velocity structure reduces the long period systematic bias particularly for stations located close to the Banks Peninsula volcanic area.

Research papers, University of Canterbury Library

This project was initiated by ENGEO Limited and KiwiRail Holdings Limited to assess the stability of Slovens Creek Viaduct (specifically its western abutment) and a 3km section of rail corridor between Slovens Creek Viaduct and Avoca on the Midland Line (MDL). Commonly known as the scenic TranzAlpine rail journey (through Arthurs Pass National Park) the MDL connects Greymouth to Christchurch via Rolleston, where the MDL meets the Main South Line into Christchurch. The project area is approximately 40km southeast of Arthurs Pass Township, in the eastern extension of the Castle Hill Basin which is part of the Waimakariri Catchment and Canterbury Foothills. The field area is underlain by Rakaia Terrane, which is part of the Torlesse Composite Terrane forming the basement rock unit for the field area. Cretaceous-Tertiary rocks of the Castle Hill Basin overlie the basement strata and record a transgression-regression sequence, as well as mid-Oligocene submarine volcanism. The stratigraphic sequence in the Castle Hill Basin, and its eastern extension to Avoca, comprises two formations of the Eyre group, the older Broken River Formation and the younger Iron Creek Formation. Deep marine Porter Group limestones, marls, and tuffs of Oligocene age succeed the Iron Creek Formation of the Eyre Group, and probably records the maximum of the transgression. The Enys Formation lies disconformably on the Porter Group and is overlain unconformably by Late Pleistocene glacifluvial and glacial deposits. The Tertiary strata in the Slovens-Avoca rail corridor are weak, and the clay-rich tuff derived from mid-Oligocene volcanism is particularly prone to slaking. Extensive mapping carried out for this project has identified that some 90 percent of the surface along the length of the Slovens-Avoca corridor has been subject to mass movement. The landslides of the Slovens-Avoca rail corridor are clearly younger than the Last Glaciation, and Slovens Creek has been downcutting, with associated faulting and uplift, to form the present day geomorphology of the rail corridor. Deep-seated landslides in the rail corridor extend to Slovens Creek, locally deflecting the stream course, and a generic ground failure model for the rail corridor has been developed. Exploratory geotechnical investigations, including core drilling, installation of an inclinometer and a piezometer, enabled the construction of a simple ground model and cross section for the Slovens Creek Viaduct western abutment. Limit-equilibrium and pseudo-static slope stability analyses using both circular and block critical slip surface search methods were applied to the ground model for the western abutment of Slovens Creek Viaduct. Piezometric and strength data obtained during laboratory testing of core material have been used to constrain the western abutment stability assessment for one representative section line (C-C’). Prior to pseudo-static sensitivity analyses peak ground acceleration (PGA) for various Ultimate Limit State (ULS) design return periods, defined by an equation given in NZS1170.5:2004, were calculated and have been used as a calibration technique to find and compare specific PGA values for pseudo-static analyses in the Slovens Creek Viaduct area. The main purpose has been to provide an indication of how railway infrastructure could be affected by seismic events of various return periods defined by ULS design standards for the area. Limit equilibrium circular slip surface search methods, both grid search and auto refine search, indicated the slope is stable with a FoS greater than 1.0 returned from each, although one particular surface returned the lowest FoS in each. This surface is in the lower portion of the slope, adjacent to Slovens Stream and northeast of the MDL. As expected, pseudo-static analyses returned a lower FoS overall when compared to limit equilibrium analyses. The PGA analyses suggest that partial ground failure at the Slovens Creek Viaduct western abutment could occur in a 1 in 25-year return period event within materials on the slower slope beyond the immediate rail corridor. A ULS (1 in 500-year) event in the Slovens Creek Viaduct area would likely produce a PGA of ~0.9g, and the effects on the western abutment and rail infrastructure would most likely be catastrophic. Observed ground conditions for the western abutment of the Slovens Creek Viaduct suggest there is no movement within the landslide at depth within the monitoring timeframe of this project (22 May 2015 – 4 August 2015). Slope stability monitoring is recommended to be continued in two parts: (1) the inclinometer in BH1 is to be monitored on a six monthly basis for one year following completion of this thesis, and then annually unless ground movements become evident; and (2) surface movement monitoring should be installed using a fixed datum on the stable eastern abutment. Long-term stability management strategies for the Slovens Creek Viaduct western abutment are dependent upon future observed changes and ongoing monitoring. Hazard and risk assessment using the KiwiRail Qualitative Risk Assessment Framework (QRA) is recommended, and if slope stability becomes problematic for operation of the Midland Line consideration should be given to deep slope drainage. In the event of a large magnitude or high PGA earthquake all monitoring should be reviewed.

Research papers, University of Canterbury Library

Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.

Audio, Radio New Zealand

1. Rt Hon WINSTON PETERS to the Prime Minister: Has he had time to read and digest the judgement of Justice Miller regarding the Crafar farm deal; if so, does he stand by his comments made in the House yesterday? 2. Hon DAVID PARKER to the Minister for Land Information: Does he believe he and the Government have conducted themselves competently and appropriately in relation to the decision to approve the purchase of the Crafar farms by a foreign buyer; if not, what did they do wrong? 3. JONATHAN YOUNG to the Minister of Finance: What reports has the Government issued on the economy? 4. JACINDA ARDERN to the Minister for Social Development: Does she have confidence that Work and Income meets their own &quot;case management approach&quot; expectations? 5. JAN LOGIE to the Minister for Social Development: Does she have concerns that changes to the eligibility for the Training Incentive Allowance are causing single parent beneficiaries to consider working in the sex industry? 6. Dr CAM CALDER to the Minister of Health: What improvements have there been to services for patients as a result of greater collaboration between District Health Boards? 7. Hon CLAYTON COSGROVE to the Minister for State Owned Enterprises: Does he still intend to sell 49 per cent of the four State-owned energy companies? 8. JAMI-LEE ROSS to the Minister of Local Government: What analysis has he received on rate increases across New Zealand's 78 councils following the enactment of new local government legislation in 2002? 9. Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: Does he stand by the part of his statement of 27 January, announcing the extension of the red zone offer to retirement villages, that letters of offer would be sent to each resident and CERA would work with village owners as quickly as possible to ensure the residents are assisted; if not, why not? 10. Dr RUSSEL NORMAN to the Minister for Land Information: Did Overseas Investment Office officials meet with Chinese political consul Cheng Lei late last year; if so, did they discuss Shanghai Pengxin's bid for the Crafar farms? 11. CLARE CURRAN to the Minister of Broadcasting: What is the name of the documentary which was withheld in the papers released publicly by NZ On Air titled &quot;Records of decisions made at working group meeting&quot;? 12. Hon TAU HENARE to the Minister for Economic Development: What progress has he made declaring the Volvo Ocean Race Stopover a major event under the Major Events Management Act 2007?

Research papers, University of Canterbury Library

From 2010, Canterbury, a province of Aotearoa New Zealand, experienced three major disaster events. This study considers the socio-ecological impacts on cross-sectoral suicide prevention agencies and their service users of the 2010 – 2016 Canterbury earthquake sequence, the 2019 Christchurch mosque attacks and the COVID-19 pandemic in Canterbury. This study found the prolonged stress caused by these events contributed to a rise in suicide risk factors including anxiety, fear, trauma, distress, alcohol misuse, relationship breakdown, childhood adversity, economic loss and deprivation. The prolonged negative comment by the media on wellbeing in Canterbury was also unhelpful and affected morale. The legacy of these impacts was a rise in referrals to mental health services that has not diminished. This adversity in the socio-ecological system also produced post-traumatic growth, allowing Cantabrians to acquire resilience and help-seeking abilities to support them psychologically through the COVID-19 pandemic. Supporting parental and teacher responses, intergenerational support and targeted public health campaigns, as well as Māori family-centred programmes, strengthened wellbeing. The rise in suicide risk led to the question of what services were required and being delivered in Canterbury and how to enable effective cross-sectoral suicide prevention in Canterbury, deemed essential in all international and national suicide prevention strategies. Components from both the World Health Organisation Suicide Prevention Framework (WHO, 2012; WHO 2021) and the Collective Impact model (Hanleybrown et al., 2012) were considered by participants. The effectiveness of dynamic leadership and the essential conditions of resourcing a supporting agency were found as were the importance of processes that supported equity, lived experience and the partnership of Māori and non-Māori stakeholders. Cross-sectoral suicide prevention was found to enhance the wellbeing of participants, hastening learning, supporting innovation and raising awareness across sectors which might lower stigma. Effective communication was essential in all areas of cross-sectoral suicide prevention and clear action plans enabled measurement of progress. Identified components were combined to create a Collective Impact Suicide Prevention framework that strengthens suicide prevention implementation and can be applied at a local, regional and national level. This study contributes to cross-sectoral suicide prevention planning by considering the socio- ecological, policy and practice mitigations required to lower suicide risk and to increase wellbeing and post-traumatic growth, post-disaster. This study also adds to the growing awareness of the contribution that social work can provide to suicide prevention and conceptualises an alternative governance framework and practice and policy suggestions to support effective cross-sectoral suicide prevention.

Audio, Radio New Zealand

Since Standing Room Only started some of the biggest changes we've seen in attitudes towards art and artists has happened in Otautahi Christchurch. How much artists contributed to the city's emotional recovery from the earthquakes through projects like Gap Filler, but also how many individual people created and shared their work. Before the quakes, Neil Dawson's monumental sculpture The Challice in the Square was initially criticised, but within days of its unveiling it became an impromptu shrine for the New York victims of 9/11. Back in 1998, the SCAPE Public Art started commissioning large outdoor works by international and Kiwi sculptors and artists. Some stayed but most of them were temporary. Some attracted criticism but they certainly got people talking. As SCAPE reaches its quarter century, its founder and Executive Director Deborah McCormick is standing down in March next year. Deborah's last SCAPE will see her tick off one of her long held ambitions - to secure a permanent sculpture for Christchurch by Auckland-based artist Dr Brett Graham. Lynn Freeman talks with Deborah and Brett, first asking Deborah to take us back to the lightbulb moment that led to SCAPE public art event.

Research Papers, Lincoln University

The study contributes to a better understanding of utilisation and interaction patterns in post-disaster temporary urban open spaces. A series of devastating earthquakes caused large scale damage to Christchurch’s central city and many suburbs in 2010 and 2011. Various temporary uses have emerged on vacant post-earthquake sites including community gardens, urban agriculture, art installations, event venues, eateries and cafés, and pocket parks. Drawing on empirical data obtained from a spatial qualities survey and a Public Life Study, the report analyses how people used and interacted with three exemplary transitional community-initiated open spaces (CIOS) in relation to particular physical spatial qualities in central Christchurch over a period of three weeks. The report provides evidence that users of post-disaster transitional community-initiated open spaces show similar utilisation and interaction patterns in relation to specific spatial qualities as observed in other urban environments. The temporary status of CIOS did apparently not influence ‘typical’ utilisation and interaction patterns.

Research papers, University of Canterbury Library

The Canterbury earthquakes and the rebuild are generation-defining events for twenty-first century Aotearoa/ New Zealand. This article uses an actor network approach to explore 32 women’s narratives of being shaken into dangerous disaster situations and reconstituting themselves to cope in socially innovative ways. The women’s stories articulate on-going collective narratives of experiencing disaster and coping with loss in ‘resilient’ ways. In these women’s experiences, coping in disasters is not achieved by talking through the emotional trauma. Instead, coping comes from seeking solace through engagement with one’s own and others’ personal risk and resourcefulness in ways that feed into the emergence of socially innovative voluntary organisations. These stories offer conceptual insight into the multivalent interconnections between resilience and vulnerabilities and the contested nature of post-disaster recovery in Aotearoa/New Zealand. These women gave voice to living through disasters resiliently in ways that forged new networks of support across collective and personal narratives and broader social goals and aspirations for Aotearoa/New Zealand’s future.

Research Papers, Lincoln University

The New Zealand Kellogg Rural Leaders Programme develops emerging agribusiness leaders to help shape the future of New Zealand agribusiness and rural affairs. Lincoln University has been involved with this leaders programme since 1979 when it was launched with a grant from the Kellogg Foundation, USA.At 4.35am on 4th September 2010, Canterbury was hit by an earthquake measuring 7.1 on the Richter scale. On 22nd February 2011 and 13th June 2011 a separate fault line approximately 35km from the first, ruptured to inflict two further earthquakes measuring 6.3 and 6.0 respectively. As a direct result of the February earthquake, 181 people lost their lives. Some commentators have described this series of earthquakes as the most expensive global insurance event of all time. These earthquakes and the more than 7000 associated aftershocks have had a significant physical impact on parts of Canterbury and virtually none on others. The economic, social and emotional impacts of these quakes spread across Canterbury and beyond. Waimakariri district, north of Christchurch, has reflected a similar pattern, with over 1400 houses requiring rebuild or substantial repair, millions of dollars of damage to infrastructure, and significant social issues as a result. The physical damage in Waimakiriri District was predominately in parts of Kaiapoi, and two small beach settlements, The Pines and Kairaki Beach with pockets elsewhere in the district. While the balance of the district is largely physically untouched, the economic, social, and emotional shockwaves have spread across the district. Waimakariri district consists of two main towns, Rangiora and Kaiapoi, a number of smaller urban areas and a larger rural area. It is considered mid-size in the New Zealand local government landscape. This paper will explore the actions and plans of Waimakiriri District Council (WDC) in the Emergency Management Recovery programme to provide context to allow a more detailed examination of the planning processes prior to, and subsequent to the earthquakes. This study looked at documentation produced by WDC, applicable legislation and New Zealand Emergency Management resources and other sources. Key managers and elected representatives in the WOC were interviewed, along with a selection of governmental and nongovernmental agency representatives. The interview responses enable understanding of how central Government and other local authorities can benefit from these lessons and apply them to their own planning. It is intended that this paper will assist local government organisations in New Zealand to evaluate their planning processes in light of the events of 2010/11 in Canterbury and the lessons from WDC.

Research papers, University of Canterbury Library

Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.

Research papers, University of Canterbury Library

Tsunami have the potential to cause significant disruptions to society, including damage to infrastructure, critical to the every-day operation of society. Effective risk management is required to reduce the potential tsunami impacts to them. Christchurch city, situated on the eastern coast of New Zealand’s South Island, is exposed to a number of far-field tsunami hazards. Although the tsunami hazard has been well identified for Christchurch city infrastructure, the likely impacts have not been well constrained. To support effective risk management a credible and realistic infrastructure impact model is required to inform risk management planning. The objectives of this thesis are to assess the impacts on Christchurch city infrastructure from a credible, hypothetical far-field tsunami scenario. To achieve this an impact assessment process is adopted, using tsunami hazard and exposure measures to determine asset vulnerability and subsequent impacts. However, the thesis identified a number of knowledge gaps in infrastructure vulnerability to tsunami. The thesis addresses this by using two approaches: a tsunami damage matrix; and the development of tsunami fragility functions. The tsunami damage matrix pools together tsunami impacts on infrastructure literature, and post-event field observations. It represents the most comprehensive ‘look-up’ resource for tsunami impacts to infrastructure to date. This damage matrix can inform the assessment of tsunami impacts on Christchurch city infrastructure by providing a measure of damage likelihood at various hazard intensities. A more robust approach to tsunami vulnerability of infrastructure are fragility functions, which are also developed in this thesis. These were based on post-event tsunami surveys of the 2011 ‘Tohoku’ earthquake tsunami in Japan. The fragility functions are limited to road and bridge infrastructure, but represent the highest resolution measure of vulnerability for the given assets. As well as providing a measure of damage likelihood for a given tsunami hazard intensity, these also indicate a level of asset damage. The impact assessment process, and synthesized vulnerability measures, are used to run tsunami impact models for Christchurch infrastructure to determine the probability of asset damage occurring and to determine if impact will reach or exceed a given damage state. The models suggest that infrastructure damage is likely to occur in areas exposed to tsunami inundation in this scenario, with significant damage identified for low elevation roads and bridges. The results are presented and discussed in the context of the risk management framework, with emphasis on using risk assessment to inform risk treatment, monitoring and review. In summary, this thesis A) advances tsunami vulnerability and impact assessment methodologies for infrastructure and B) provides a tsunami impact assessment framework for Christchurch city infrastructure which will inform infrastructure tsunami risk management for planners, emergency managers and lifelines groups.

Research papers, University of Canterbury Library

A Transitional Imaginary: Space, Network and Memory in Christchurch is the outcome and the record of a particular event: the coming together of eight artists and writers in Ōtautahi Christchurch in November 2015, with the ambitious aim to write a book collaboratively over five days. The collaborative process followed the generative ‘book sprint’ method founded by our facilitator for the event, Adam Hyde, who has long been immersed in digital practices in Aotearoa. A book sprint prioritises the collective voice of the participants and reflects the ideas and understandings that are produced at the time in which the book was written, in a plurality of perspectives. Over one hundred books have been completed using the sprint methodology, covering subjects from software documentation to reflections on collaboration and fiction. We chose to approach writing about Ōtautahi Christchurch through this collaborative process in order to reflect the complexity of the post-quake city and the multiple paths to understanding it. The city has itself been a space of intensive collaboration in the post-disaster period. A Transitional Imaginary is a raw and immediate record, as much felt expression as argued thesis. In many ways the process of writing had the character of endurance performance art. The process worked by honouring the different backgrounds of the participants, allowing that dialogue and intensity could be generative of different forms of text, creating a knowledge that eschews a position of authority, working instead to activate whatever anecdotes, opinions, resources and experiences are brought into discussion. This method enables a dynamic of voices that merge here, separate there and interrupt elsewhere again. As in the contested process of rebuilding and reimagining Christchurch itself, the dissonance and counterpoint of writing reflects the form of conversation itself. This book incorporates conflict, agreement and the activation of new ideas through cross-fertilisation to produce a new reading of the city and its transition. The transitional has been given a specific meaning in Christchurch. It is a product of local theorising that encompasses the need for new modes of action in a city that has been substantially demolished (Bennett & Parker, 2012). Transitional projects, such as those created by Gap Filler, take advantage of the physical and social spaces created by the earthquake through activating these as propositions for new ways of being in the city. The transitional is in motion, looking towards the future. A Transitional Imaginary explores the transitional as a way of thinking and how we understand the city through art practices, including the digital and in writing.