Search

found 911 results

Images, UC QuakeStudies

HITLab NZ's Andreas Dunser and UC clinical psychologists Dr Janet Carter, Dr Eileen Britt and Associate Professor Martin Dorahy, who are creating an earthquake simulator at the University of Canterbury to investigate ways to help Cantabrians overcome post-traumatic stress disorders caused by ongoing seismic activity.

Images, UC QuakeStudies

HITLab NZ's Andreas Dunser and UC clinical psychologists Dr Janet Carter, Dr Eileen Britt and Associate Professor Martin Dorahy, who are creating an earthquake simulator at the University of Canterbury to investigate ways to help Cantabrians overcome post-traumatic stress disorders caused by ongoing seismic activity.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

Damaged rose window of the St John the Baptist Church at Latimer Square; aftermath of the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Videos, eqnz.chch.2010

At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.

Images, eqnz.chch.2010

Repairs being carried out on this restaurant (converted from a church) at the Hereford Street / Manchester Street intersection;aftermath of the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Heaving and subsidence on the faultline left scars where the magnitude 7.1 earthquake on Saturday 4 September 2010 originated.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

The latest (but temporary) tourist attraction in mid-Canterbury! This was the previously unknown faultline where the Saturday 4 September 2010 earthquake originated.

Videos, eqnz.chch.2010

At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.

Videos, eqnz.chch.2010

At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

Tension cracks at least 300 mm deep, on the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

This beautiful building on Madras Street is red stickered and may be condemned if the structural damage it suffered in the magnitude 7,1 earthquake on Saturday 4 September 2010 cannot be repaired.

Images, eqnz.chch.2010

Toppled grain silos on the outskirts of Darfield near the epicentre of the magnitude 7,1 earthquake that struck on Saturday 4 September 2010.

Images, eqnz.chch.2010

This beautiful building on Madras Street is red stickered and may be condemned if the structural damage it suffered in the magnitude 7,1 earthquake on Saturday 4 September 2010 cannot be repaired.

Images, eqnz.chch.2010

On the way to Darfield to locate the faultline where the tectonic plates slipped, causing the magnitude 7.1 earthquake on Saturday 4 September 2010.

Images, eqnz.chch.2010

This beautiful building on Madras Street is red stickered and may be condemned if the structural damage it suffered in the magnitude 7,1 earthquake on Saturday 4 September 2010 cannot be repaired.

Research papers, The University of Auckland Library

The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic response in as-built environment, which includes all the real physical properties of a structure under study and its surroundings. The recorded responses can be used for better understanding of behavior of structures by extracting their dynamic characteristics. It is significantly valuable to examine the behavior of buildings under different excitation scenarios. The trends in dynamic characteristics, such as modal frequencies and damping ratios, thus developed can provide quantitative data for the variations in the behavior of buildings. Moreover, such studies provide invaluable information for the development and calibration of realistic models for the prediction of seismic response of structures in model updating and structural health monitoring studies. This thesis comprises two parts. The first part presents an evaluation of seismic responses of two instrumented three storey RC buildings under a selection of 50 earthquakes and behavioral changes after Ms=7.1 Darfield (2010) and Ms=6.3 Christchurch (2011) earthquakes for an instrumented eight story RC building. The dynamic characteristics of the instrumented buildings were identified using state-of-the-art N4SID system identification technique. Seismic response trends were developed for the three storey instrumented buildings in light of the identified frequencies and the peak response accelerations (PRA). Frequencies were observed to decrease with excitation level while no trends are discernible for the damping ratios. Soil-structure interaction (SSI) effects were also determined to ascertain their contribution in the seismic response. For the eight storey building, it was found through system identification that strong nonlinearities in the structural response occurred and manifested themselves in all identified natural frequencies of the building that exhibited a marked decrease during the strong motion duration compared to the pre-Darfield earthquakes. Evidence of foundation rocking was also found that led to a slight decrease in the identified modal frequencies. Permanent stiffness loss was also observed after the strong motion events. The second part constitutes developing and calibrating finite element model (FEM) of the instrumented three storey RC building with a shear core. A three dimensional FEM of the building is developed in stages to analyze the effect of structural, non-structural components (NSCs) and SSI on the building dynamics. Further to accurately replicate the response of the building following the response trends developed in the first part of the thesis, sensitivity based model updating technique was applied. The FEMs were calibrated by tuning the updating parameters which are stiffnesses of concrete, NSCs and soil. The updating parameters were found to generally follow decreasing trends with the excitation level. Finally, the updated FEM was used in time history analyses to assess the building seismic performance at the serviceability limit state shaking. Overall, this research will contribute towards better understanding and prediction of the behavior of structures subjected to ground motion.

Research papers, University of Canterbury Library

This research employs a deterministic seismic risk assessment methodology to assess the potential damage and loss at meshblock level in the Christchurch CBD and Mount Pleasant primarily due to building damage caused by earthquake ground shaking. Expected losses in terms of dollar value and casualties are calculated for two earthquake scenarios. Findings are based on: (1) data describing the earthquake ground shaking and microzonation effects; (2) an inventory of buildings by value, floor area, replacement value, occupancy and age; (3) damage ratios defining the performance of buildings as a function of earthquake intensity; (4) daytime and night-time population distribution data and (5) casualty functions defining casualty risk as a function of building damage. A GIS serves as a platform for collecting, storing and analyzing the original and the derived data. It also allows for easy display of input and output data, providing a critical functionality for communication of outcomes. The results of this study suggest that economic losses due to building damage in the Christchurch CBD and Mount Pleasant will possibly be in the order of $5.6 and $35.3 million in a magnitude 8.0 Alpine fault earthquake and a magnitude 7.0 Ashley fault earthquake respectively. Damage to non-residential buildings constitutes the vast majority of the economic loss. Casualty numbers are expected to be between 0 and 10.

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquakes were recorded over a dense strong motion network in the near-source region, yielding significant observational evidence of seismic complexities, and a basis for interpretation of multi-disciplinary datasets and induced damage to the natural and built environment. This paper provides an overview of observed strong motions from these events and retrospective comparisons with both empirical and physics-based ground motion models. Both empirical and physics-based methods provide good predictions of observations at short vibration periods in an average sense. However, observed ground motion amplitudes at specific locations, such as Heathcote Valley, are seen to systematically depart from ‘average’ empirical predictions as a result of near surface stratigraphic and topographic features which are well modelled via sitespecific response analyses. Significant insight into the long period bias in empirical predictions is obtained from the use of hybrid broadband ground motion simulation. The comparison of both empirical and physics-based simulations against a set of 10 events in the sequence clearly illustrates the potential for simulations to improve ground motion and site response prediction, both at present, and further in the future.

Research papers, The University of Auckland Library

During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.

Research papers, The University of Auckland Library

The Canterbury earthquake series of 2010/2011 has turned the city of Christchurch into a full scale natural laboratory testing the structural and non-structural response of buildings under moderate to very severe earthquake shaking. The lessons learned from this, which have come at great cost socially and economically, are extremely valuable in increasing our understanding of whole building performance in severe earthquakes. Given current initiatives underway on both sides of the Tasman towards developing joint Australasian steel and composite steel/concrete design and construction standards that would span a very wide range of geological conditions and seismic zones, these lessons are relevant to both countries. This paper focusses on the performance of steel framed buildings in Christchurch city, with greatest emphasis on multi-storey buildings, but also covering single storey steel framed buildings and light steel framed housing. It addresses such issues as the magnitude and structural impact of the earthquake series, importance of good detailing, lack of observed column base hinging, the excellent performance of composite floors and it will briefly cover research underway to quantify some of these effects for use in design.

Research papers, University of Canterbury Library

In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.