None
None
The Mw 7.8 Kaikōura earthquake ruptured ~200 km at the ground surface across the New Zealand plate boundary zone in the northern South Island. This study was conducted in an area of ~600 km2 in the epicentral region where the faults comprise two main non-coplanar sets that strike E-NE and NNE-NW with mainly steep dips (60о-80°). Analysis of the surface rupture using field and LiDAR data provides new information on the dimensions, geometries and kinematics of these faults which was not previously available from pre-earthquake active faults or bedrock structure. The more northerly striking fault set are sub-parallel to basement bedding and accommodated predominantly left-lateral reverse slip with net slips of ~1 and ~5 m for the Stone Jug and Leader faults, respectively. The E-NE striking Conway-Charwell and The Humps faults accrued right-lateral to oblique reverse with net slips of ~2 and ~3 m, respectively. The faults form a hard-linked system dominated by kinematics consistent with the ~260° trend of the relative plate motion vector and the transpressional structures recorded across the plate boundary in the NE South Island. Interaction and intersection of the main fault sets facilitated propagation of the earthquake and transfer of slip northwards across the plate boundary zone.
An image featuring a quote from Sera Thompson, Regional Advisor for the Ministry for Pacific Peoples. The image reads, "Five years on I feel... Tired, but hopeful// Sera Thompson, Ministry for Pacific Peoples." All Right? uploaded image as a Facebook cover photo on 17 February 2016 at 7:08am. To view the image, see All Right? Five Years On I Feel: Creative Material 1 (JPEG)
An image featuring a quote by Donovan Ryan, Communications Advisor for All Right?. The image reads, "Five years on I feel... There's a long way to go! Donovan, St Albans." All Right uploaded the image as a cover photo on their Facebook page on 17 February 2016 at 2:37pm.To view the image, see All Right? Five Years On I Feel: Creative Material 2 (JPEG).
A significant portion of economic loss from the Canterbury Earthquake sequence in 2010-2011 was attributed to losses to residential buildings. These accounted for approximately $12B of a total $40B economic losses (Horspool, 2016). While a significant amount of research effort has since been aimed at research in the commercial sector, little has been done to reduce the vulnerability of the residential building stock.
An audio recording of a mayoral debate hosted by Generation Zero in partnership with 350 Christchurch. The event was titled Mayoral Debate: a climate-smart Christchurch. It was held on campus at the University of Canterbury on Thursday 22 September, 2016 and was moderated by Catarina Gutierrez of the Ministry of Awesome. The debate was structured as follows: Section 1: Candidates answered set questions sent prior to the event Section 2: Candidates answered set questions they have not seen before Interval Section 3: Candidates answered written questions from the audience (climate-related questions were submitted during the interval and a selection of these were given to the moderator). The audio recording was taken through the University's Echo system.
Kaikoura and Wellington businesses operating adjacent to quake damaged buildings may face disruption for years to come as owners drag their feet on repair or demolition work. A Christchurch property owner has been unable to completely re-open for business since the February 2011 earthquake.
John Bent leaned over and grabbed the goose. There was a whole flock of them in the street—surely one wouldn’t be missed? It was 11pm, and he had been drinking heavily all night. In his muddled state it seemed like … Continue reading →
The first feeling that strikes everyone on coming to New Zealand is its intense want of animal life. Mountains, plains, rivers, – mere features without a soul; for you can hardly dignify the miserable ground lark, the wailing weka, or … Continue reading →
I don’t know about you, but I don’t like oysters – they’re slimy, they look weird and they taste like the sea. So perhaps I was affected more than your average person when I recently had the task of analysing … Continue reading →
A report created by the University of Canterbury Quake Centre and the University of Auckland, funded by the Building Research Levy. It shows how an innovation process was initiated and managed throughout the rebuilding of the horizontal infrastructure after the Canterbury earthquakes.
A report which details the findings of a follow-up performance audit carried out by the Office of the Auditor-General to assess the effectiveness and efficiency of arrangements to repair Christchurch's horizontal infrastructure.
A plan which outlines how timely and accurate information relating to estimating, actual project costs, future commitments and total forecast cost will be managed and reported for each project phase in the programme. The first version of this plan was produced on 24 June 2011.
A plan which provides SCIRT with clear direction and guidelines regarding communication in the event of a crisis. The first version of this plan was produced on 1 December 2013. Note that personal details of key personnel have been removed from this document.
A video of a presentation by Arihia Bennett, Chief Executive Officer of Te Rūnanga o Ngāi Tahu, during the first plenary of the 2015 People in Disasters Conference. The presentation is titled, "Local People Perspective".
A plan which outlines the function, roles and responsibilities of SCIRT during an emergency event affecting SCIRT construction works. The first version of this plan was produced on 30 April 2012. Note that personal details of key personnel have been removed from this document.
We present preliminary observations on three waters impacts from the Mw7.8 14th November 2016 Kaikōura Earthquake on wider metropolitan Wellington, urban and rural Marlborough, and in Kaikōura township. Three waters systems in these areas experienced widespread and significant transient ground deformation in response to seismic shaking, with localised permanent ground deformation via liquefaction and lateral spreading. In Wellington, potable water quality was impacted temporarily by increased turbidity, and significant water losses occurred due to damaged pipes at the port. The Seaview and Porirua wastewater treatment plants sustained damage to clarifier tanks from water seiching, and increased water infiltration to the wastewater system occurred. Most failure modes in urban Marlborough were similar to the 2010-2011 Canterbury Earthquake Sequence; however some rural water tanks experienced rotational and translational movements, highlighting importance of flexible pipe connections. In Kaikōura, damage to reservoirs and pipes led to loss of water supply and compromised firefighting capability. Wastewater damage led to environmental contamination, and necessitated restrictions on greywater entry into the system to minimise flows. Damage to these systems necessitated the importation of tankered and bottled water, boil water notices and chlorination of the system, and importation of portaloos and chemical toilets. Stormwater infrastructure such as road drainage channels was also damaged, which could compromise condition of underlying road materials. Good operational asset management practices (current and accurate information, renewals, appreciation of criticality, good system knowledge and practical contingency plans) helped improve system resilience, and having robust emergency management centres and accurate Geographic Information System data allowed effective response coordination. Minimal damage to the wider built environment facilitated system inspections. Note Future research will include detailed geospatial assessments of seismic demand on these systems and attendant modes of failure, levels of service restoration, and collaborative development of resilience measures.
Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.
In 2013 Becca Wood, Spatial Performance Practitioner, and Molly Mullen, Applied Theatre Practitioner, collaborated to create a short ambulatory performance with audio score for a group of drama educators attending a conference workshop on the possibilities of walking as performance. The performance was created remotely from the intended site: Rangi Ruru Girls’ School, in Christchurch, New Zealand. Following the destruction of the 2012 earthquake, this site was in a state of transformation and recovery. The performance walk attended to the histories, geographies and politics of this place, somatically, architecturally and socially. This paper engages with three critical questions: How might mediated listening and walking activate the coming together of bodies and place? What performative shifts occurred for the participants in the walk and workshop? How might we come to our senses? Through a performative practice of mediated site-based listening and walking, this paper is a reflection on the creative process and performance. We consider the potential for technologically mediated performance to offer new modes for learning and creative practice through interdisciplinary and evolving intermedial practices. http://www.tandfonline.com/toc/crde20/current AM - Accepted Manuscript
An image of a frying pan, which reads, "Find your hidden strengths. Take the free quiz. allright.org.nz." The image promotes the All Right? Hidden Strengths project, which encouraged people to take and share a VIA personality survey. The frying pan represents the strength of kindness. All Right? posted the image on their Facebook page as a cover photo on 1 June 2016 at 6:54am.
A photograph of Anna Mowat, Health Promoter for All Right?, taking part in #FiveYearsOn. Mowat holds a sign which reads, "Five years on I feel... A mixture of optimism and worry. Anna, Lyttelton." All Right? posted to photograph on their Facebook Timeline on 21 February 2016 at 9:11am. All Right? captioned the photograph, "Anna from Lyttelton feels a mixture of optimism and worry. #fiveyearson #5yearson #canterburynz".
A photograph of Ciaran Fox (left) and Sue Turner (right) on the slide at Margaret Mahy Playground. Fox is the All Right? Mental Health Promoter and Turner is the All Right? Campaign Manager. The photograph was taken to promote '#BrighterAutumn', a photo competition held by All Right? and the Christchurch Mail. This photograph was on the cover of the April 14 2016 edition of the Christchurch Mail.
A photograph of Mark Jenkins, Manager of Westpac The Palms, taking part in #FiveYearsOn. Westpac The Palms was an All Right? Champion. Jenkins holds a sign which reads, "Five years on, I feel... Optimistic." All Right? posted the photograph on their Facebook Timeline on 21 February 2016 at 9:12am. All Right? captioned the photograph, "Mark from Westpac - The Palms is feeling optimistic! #fiveyears on #5yearson #allrightnz".
Since the 7.8 magnitude earthquake jolted North Canterbury on Monday, the HMNZS Canterbury has evacuated about 640 people, 9.3 tonnes of baggage, a cat, 17 dogs. And, about 30,000 bees. But South Island beekeepers will face ongoing challenges. John Hartnell, is a Canterbury-based board member of Apiculture New Zealand.
In 1874 this modest two-storey farm house was built on the outskirts of Christchurch. It’s not the sort of house we normally see in Christchurch, in part because of its age, but also because it was built as a farm house, … Continue reading →
A decision on the future of Christchurch's red zoned land could be made within a year. That's the hope of the man at the helm of Regenerate Christchurch, one of two organisations charged with taking over the city's rebuild from the Earthquake Recovery Authority, which shuts its doors in just three days.
None
Recent global tsunami events have highlighted the importance of effective tsunami risk management strategies (including land-use planning, structural and natural defences, warning systems, education and evacuation measures). However, the rarity of tsunami means that empirical data concerning reactions to tsunami warnings and tsunami evacuation behaviour is rare when compared to findings about evacuations to avoid other sources of hazard. To date empirical research into tsunami evacuations has focused on evacuation rates, rather than other aspects of the evacuation process. More knowledge is required about responses to warnings, pre-evacuation actions, evacuation dynamics and the return home after evacuations. Tsunami evacuation modelling has the potential to inform evidence-based tsunami risk planning and response. However to date tsunami evacuation models have largely focused on timings of evacuations, rather than evacuation behaviours. This Masters research uses a New Zealand case study to reduce both of these knowledge gaps. Qualitative survey data was gathered from populations across coastal communities in Banks Peninsula and Christchurch, New Zealand, required to evacuate due to the tsunami generated by the November 14th 2016 Kaikōura Earthquake. Survey questions asked about reactions to tsunami warnings, actions taken prior to evacuating and movements during the 2016 tsunami evacuation. This data was analysed to characterise trends and identify factors that influenced evacuation actions and behaviour. Finally, it was used to develop an evacuation model for Banks Peninsula. Where appropriate, the modelling inputs were informed by the survey data. Three key findings were identified from the results of the evacuation behaviour survey. Although 38% of the total survey respondents identified the earthquake shaking as a natural cue for the tsunami, most relied on receiving official warnings, including sirens, to prompt evacuations. Respondents sought further official information to inform their evacuation decisions, with 39% of respondents delaying their evacuation in order to do so. Finally, 96% of total respondents evacuated by car. This led to congestion, particularly in more densely populated Christchurch city suburbs. Prior to this research, evacuation modelling had not been completed for Banks Peninsula. The results of the modelling showed that if evacuees know how to respond to tsunami warnings and where and how to evacuate, there are no issues. However, if there are poor conditions, including if people do not evacuate immediately, if there are issues with the roading network, or if people do not know where or how to evacuate, evacuation times increase with there being more bottlenecks leading out of the evacuation zones. The results of this thesis highlight the importance of effective tsunami education and evacuation planning. Reducing exposure to tsunami risk through prompt evacuation relies on knowledge of how to interpret tsunami warnings, and when, where and how to evacuate. Recommendations from this research outline the need for public education and engagement, and the incorporation of evacuation signage, information boards and evacuation drills. Overall these findings provide more comprehensive picture of tsunami evacuation behaviour and decision making based on empirical data from a recent evacuation, which can be used to improve tsunami risk management strategies. This empirical data can also be used to inform evacuation modelling to improve the accuracy and realism of the evacuation models.
A video of a presentation by Dr Penelope Burns during the second plenary of the 2016 People in Disasters Conference. Burns is the Senior Lecturer in the Department of General Practice at the University of Western Sydney. The presentation is titled, "Recovery Begins in Preparedness".The abstract for this presentation reads as follows: Involvement of primary care doctors in planning is essential for optimising the health outcomes of communities during and after disasters. However, our experience in Australia has shown that primary care doctors have not been included in a substantial way. This presentation will highlight our experience in the Victorian and New South Wales bushfires and the Sydney Siege. It will stress the crucial need to involve primary care doctors in planning at national, state, and local levels, and how we are working to implement this.