Christchurch Described Christchurch, New Zealand, is called the “City of the Plains” for its streets are as level as a billiard table, giving the visitor an impression that each street…
In 1886, an English woman who called herself ‘Hopeful’, wrote of her experiences after emigrating to Christchurch, New Zealand. She berated the agents of shipping companies who painted…
In recent years, rocking isolation has become an effective approach to improve seismic performance of steel and reinforced concrete structures. These systems can mitigate structural damage through rigid body displacement and thus relatively low requirements for structural ductility, which can significantly improve seismic resilience of structures and reduce repairing costs after strong earthquakes. A number of base rocking structural systems with only a single rocking interface have been proposed. However, these systems can have significant high mode effect for high rise structures due to the single rocking interface. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. A number of structural configurations will be tested [1, 2], and non-structural elements including ceilings, infilling walls, glazed curtain walls, precast concrete panels, piping system will also be tested in this project [3]. Within this study, a multiple rocking column steel structural system was proposed and investigated mainly by Tongji team with assistance of NZ members. The concept of rocking column system initiates from the structure of Chinese ancient wooden pagoda. In some of Chinese wooden pagodas, there are continuous core columns hanged only at the top of each pagoda, which is not connected to each stories. This core column can effectively avoid collapse of the whole structure under large storey drifts. Likewise, there are also central continuous columns in the newly proposed steel rocking column system, which can avoid weak story failure mechanism and make story drifts more uniform. In the proposed rocking column system, the structure can switch between an elastic rigidly connected moment resisting frame and a controlled rocking column system when subjected to strong ground motion excitations. The main seismic energy can be dissipated by asymmetric friction beam–column connections, thereby effectively reducing residual displacement of the structure under seismic loading without causing excessive damage to structural members. Re–centering of the structure is provided not only by gravity load carried by rocking columns, but also by mould coil springs. To investigate dynamic properties of the proposed system under different levels of ground excitations, a full-scale threestory steel rocking column structural system with central continuous columns is to be tested using the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China and an analytical model is established. A finite element model is also developed using ABAQUS to simulate the structural dynamic responses. The rocking column system proposed in this paper is shown to produce resilient design with quick repair or replacement.
Timber-based hybrid structures provide a prospective solution for utilizing environmentally friendly timber material in the construction of mid-rise or high-rise structures. This study mainly focuses on structural damage evaluation for a type of timber-steel hybrid structures, which incorporate prefabricated light wood frame shear walls into steel moment-resisting frames (SMRFs). The structural damage of such a hybrid structure was evaluated through shake table tests on a four-story large-scale timber-steel hybrid structure. Four ground motion records (i.e., Wenchuan earthquake, Canterbury earthquake, El-Centro earthquake, and Kobe earthquake) were chosen for the tests, with the consideration of three different probability levels (i.e., minor, moderate and major earthquakes) for each record. During the shake table tests, the hybrid structure performed quite well with visual damage only to wood shear walls. No visual damage in SMRF and the frame-to-wall connections was observed. The correlation of visual damage to seismic intensity, modal-based damage index and inter-story drift was discussed. The reported work provided a basis of knowledge for performance-based seismic design (PBSD) for such timber-based hybrid structures.
In order to provide information related to seismic vulnerability of non-ductile reinforced concrete (RC) frame buildings, and as a complementary investigation on innovative feasible retrofit solutions developed in the past six years at the University of Canterbury on pre-19170 reinforced concrete buildings, a frame building representative of older construction practice was tested on the shake table. The specimen, 1/2.5 scale, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. The as-built (benchmark) specimen was first tested under increasing ground motion amplitudes using records from Loma Prieta Earthquake (California, 1989) and suffered significant damage at the upper floor, most of it due to lap splices failure. As a consequence, in a second stage, the specimen was repaired and modified by removing the concrete in the lap splice region, welding the column longitudinal bars, replacing the removed concrete with structural mortar, and injecting cracks with epoxy resin. The modified as-built specimen was then tested using data recorded during Darfield (New Zealand, 2010) and Maule (Chile, 2010) Earthquakes, with whom the specimen showed remarkably different responses attributed to the main variation in frequency content and duration. In this contribution, the seismic performance of the three series of experiments are presented and compared.
All red zoned and it looked like no one is living anywhere in Culver Place. All awaiting demolition.
Three men chat in a pub. One of them reads a newspaper article about the Mayor of Christchurch, Bob Parker, who commented that he was scared of earthquakes when in Wellington. All three drinkers would rather be in Wellington than trapped beside Bob Parker at a dinner table. Context: Christchurch's Mayor has told the Emergency Management Conference he's scared to be in Wellington. He gave graphic descriptions of the Christchurch earthquakes, getting people to bang on the tables for 45 seconds so they could see what it felt like. Quantity: 1 digital cartoon(s).
A digitally manipulated image of furniture and machinery. The photographer comments, "This furniture restoration company got caught in the middle of the Christchurch earthquake and lost a whole wall. After constant exposure to the elements everything now needs a bit of restoration. They are now working in a different part of Christchurch, but their past can still be seen".
A photograph of the opening of the Think Differently Book Exchange. In the centre of the photograph, two people are browsing the books in the fridge, and to the left people are sitting at a picnic table reading.
It is fast becoming common practice for civil engineering infrastructure and building structures to be designed to achieve a set of performance objectives. To do so, consideration is now being given to systems capable of sustaining minimal damage after an earthquake while still being cost competitive. This has led to the development of high performance seismic resisting systems, followed by advances in design methodologies. The paper presents the experimental response of four pre-cast, post-tensioned rocking walls with high-performing dissipating solutions tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building however, can also be used for the design of new, high-performance structures. The use of externally mounted dampers allowed numerous dissipation schemes to be explored including mild-steel dampers (hysteretic dampers), viscous dampers, a combination of both or no dampers. The advantages of both velocity and displacement dependant dissipation was investigated for protection against strong ground motions with differing rupture characteristics i.e. far-field and near-field events. The experimental results are used to verify a proposed design procedure for post-tensioned rocking systems with supplementary hysteretic and viscous dissipation. The predicted response compared well with the measured shake-table response.
It’s that time of the year again, carols, Christmas shopping, annual staff parties, parades and backyard barbeques. For many of us, Christmas traditions are passed down through our families, and some of the fare found on our festive tables may … Continue reading →
New PM of Australia Julia Gillard stands on top of a house of cards that looks extremely unstable. She says 'As newly elected PM of Australia I promise all cards on the table'. Below are the words 'NZ not the only shaky country..' Refers to the recent closely-contested and 'most-extraordinary Australian election in decades' which has been won by Labour's Julia Gillard. The negotiating for a new government by Julia Gillard against her Liberal rival Tony Abbott took 17 days, with Julia Gillard, in the end, able to cobble together a government with the support of independents Tony Windsor and Rob Oakeshott as well as the Greens plus a long list of promises. Critics see her coalition as dysfunctional. The text below refers to the Canterbury earthquake of 4th September 2010. Quantity: 2 digital cartoon(s).
A video capturing an aftershock from the Canterbury earthquake on 13 June 2011, 2:20 pm. A strong shake after lunch time caused Ben Post to set up his camera in his workplace, capturing this aftershock. The camera is mounted on a small sturdy tripod on top of a table with wheels.
Recent severe earthquakes, such as Christchurch earthquake series, worldwide have put emphasis on building resilience. In resilient systems, not only life is protected, but also undesirable economic effects of building repair or replacement are minimized following a severe earthquake. Friction connections are one way of providing structure resilience. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs), and the symmetric friction connections (SFCs) in braces of the braced frames. Experimental and numerical studies on components have been conducted internationally. However, actual building performance depends on the many interactions, occurring within a whole building system, which may be difficult to determine accurately by numerical modelling or testing of structural components alone. Dynamic inelastic testing of a full-scale multi-storey composite floor building with full range of non-structural elements (NSEs) has not yet been performed, so it is unclear if surprises are likely to occur in such a system. A 9 m tall three-storey configurable steel framed composite floor building incorporating friction-based connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. Beams and columns are designed to remain elastic during an earthquake event, with all non-linear behaviour occurring through stable sliding frictional behaviour, dissipating energy by SHJAFCs used in MRFs and SFCs in braced frames, with and without Belleville springs. Structural systems are configurable, allowing different moment and braced frame structural systems to be tested in two horizontal directions. In some cases, these systems interact with rocking frame or rocking column system in orthogonal directions subjected to unidirectional and bidirectional horizontal shaking. The structure is designed and detailed to undergo, at worst, minor damage under series of severe earthquakes. NSEs applied include precast-concrete panels, glass curtain walling, internal partitions, suspended ceilings, fire sprinkler piping as well as some other common contents. Some of the key design considerations are presented and discussed herein
Exactly 75 years ago today, Superman made his debut in "Action Comics" No. 1. Campaigners for the restoration of the Christchurch Cathedral are "thrilled" that rebuilding the earthquake-damaged church remains on the table. The Press reports Christchurch's hotel shortage is so critical that at times visitor centre staff have had to put tourists up in their own homes.
A man sits at a table reading a C.C.C. (Christchurch City Council) report with the title 'Where your rates go!' He says 'Rubbish collection sewer roads squanderings bail outs' Context - After the Christchurch earthquake of 4 September 2010 rates have been of particular concern to residents which means people are sensitive to any possibility of squandering. Quantity: 1 digital cartoon(s).
Former drama teacher and casting director Rosie Belton (right) has a motto she lives by: "When all else fails - cook!" Her new book Wild Blackberries explores her life through food. It's about how food enhances the feeling of celebration, and comforts in times of sadness. Having lived through nearly four years of earthquakes in her hometown of Christchurch, Rosie tells Wallace Chapman about why the kitchen and dining table provided so much solace in such unstable times.
Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.
An interior view of the Cranmer Court building's octagonal corner section, which housed Plato Creative from March 2008 to November 2009. The photograph showcases the building's high windows and intricate wooden ceiling. Although designed as a book depot, this room was used as the principal's office while Christchurch Normal School was operating from the building. A table with chairs set around it can be seen in the lower part of the photograph.
A video about C1 Espresso's pneumatic tube food delivery system. The video includes an interview with café owner Sam Crofskey about his decision to install the pneumatic tubes. It also includes an interview with chef Richie Ward, who demonstrates how the tubes work. Mini burgers will be stacked inside tubes and then placed in the pneumatic system. The tube will then be sent through the café at 140 km/h to appear at people's tables.
Tests have revealed that New Zealand's latest building designs will stand up to earthquakes of a greater intensity than the ones that occurred in Christchurch and Kaikōura. Researchers from the University of Auckland and Canterbury, in collaboration with QuakeCoRE and Tongji University in China, built a two-storey concrete building and put it on one of the largest shake tables in the world. All of the building's details were based on existing buildings in Wellington and Christchurch. The project leader is the University of Auckland's Dr Rick Henry. He talks to Guyon Espiner.
Slender precast concrete wall panels are currently in vogue for the construction of tall single storey warehouse type buildings. Often their height to thickness ratio exceed the present New Zealand design code (NZS 3101) limitations of 30:1. Their real performance under earthquake attack is unknown. Therefore, this study seeks to assess the dynamic performance of slender precast concrete wall panels with different base connection details. Three base connections (two fixed base and one rocking) from two wall specimens with height to thickness ratios of 60:1 were tested under dynamic loading. The two fixed based walls had longitudinal steel volumes of 1.27% to 0.54% and were tested on the University of Canterbury shaking table to investigate their proneness to out-of-plane buckling. Based on an EUler-type theoretical formula derived as part of the study, an explanation is made as to why walls with high in-plane capacity are more prone to buckling. The theory was validated against the present and past experimental evidence. The rocking base connection designed and built in accordance with a damage avoidance philosophy was tested on the shaking table in a similar fashion to the fixed base specimens. Results show that in contrast with their fixed base counterparts, rocking walls can indeed fulfil a damage-free design objective while also remaining stable under strong earthquake ground shaking.
A newspaper lying on the boardroom table has a headline reading 'Top NZ companies planning contributions to earthquake relief'. A group of CEOs at a high level meeting almost have cardiac arrests when the chair reports that 'Some comedian suggested we CEOs donate our salary increases and bonuses... But now, moving on to serious matters... Context - Some big companies like Fletcher Building, General Motors and others have pledged substantial money to the Christchurch earthquake relief funds. The Christchurch earthquake happened 22 February 2011. Quantity: 1 digital cartoon(s).
Two people peer out from underneath a table waiting for an earthquake predicted by astrologer Ken Ring. One of them says 'Load of rubbish that Ken Ring prediction eh?' and the other agrees. Context - After the two big earthquakes in Christchurch on 4 September 2010 and 22 February 2011, the so-called Moon Man, Ken Ring, is backing away from his prediction that Christchurch will be whacked by a huge earthquake on the 20th of March 2011. His claims terrified Cantabrians and led to people fleeing Christchurch. Quantity: 1 digital cartoon(s).
The title reads 'CBD: High water table, flood/liquefaction risk...' The cartoon shows several Southern Right whales being used to ferry people around Christchurch City. Someone says 'Who needs light rail when you can have right whale!' Context: discussion about building a light rail system as a part of Christchurch post-earthquake development. Context: Several large Southern right whales have found Akaroa Harbour to their liking this week, sticking around rather than heading back south as part of their annual migration back to Antarctica. Quantity: 1 digital cartoon(s).
A woman sits at the breakfast table reading the paper - As her husband comes through the door behind her she comments that the 'Regional Council says rural people should be checking their septic tanks!' Her husband is covered in muck and surrounded by flies - he has clearly been taking the council's advice. Refers to the news that the Canterbury Regional Council is encouraging rural residents with septic tanks to check their wastewater system for any signs of damage following September's earthquake. (Radio NZ News 5 November 2010) Both colour and black and white versions of this cartoon are available Quantity: 1 digital cartoon(s).
Text across the top of the cartoon reads 'Mayor in Nepal' Christchurch Mayor Bob Parker climbs a snowy slope towards 'Mt Junket'; he is followed by sherpas carrying candles, dining table and wine glasses. Bob Parker says 'I am focused on the summit and they don't get much bigger than this!' Context - Bob Parker gave the keynote address at a United Nations-sanctioned symposium in Nepal on disaster-risk reduction. The UN and the United States Government paid Parker's costs. The disaster risk symposium featured speakers from Pakistan and Haiti - two countries struck by large earthquakes.(The Press 15 February 2011) Quantity: 1 digital cartoon(s).
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
Shows Minister for Christchurch Earthquake Recovery Gerry Brownlee delighted with his plan to rebuild Christchurch and to have it paid for buy the PM's casino. Context: Refers to the Christchurch Central Development Unit that Minister for Christchurch Earthquake Recovery Gerry Brownlee has put in place. Refers also to the very controversial deal that Prime Minister John Key has made with Auckland's SkyCity to the effect that SkyCity will pay the full construction cost of a new convention centre - estimated at $350 million, in return for being allowed to add more gaming tables and machines, and extending its licence beyond 2021. Colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).
This work investigates the possibility of developing a non-contact, non-line of sight sensor to measure interstorey drift through simulation and experimental validation. • The method uses frequency-modulated continuous wave (FMCW) radar to measure displacement. This method is commonly in use in a number of modern applications, including aircraft altimeters and automotive parking sensors. • The technique avoids numerous problems found in contemporary structural health monitoring methods, namely integral drift errors and structural modification requirements. • The smallest achievable detection error in displacement was found to be as low as 0.26%, through simulated against the displacement response of a single degree of freedom structure subject to ground motion excitation. • This was verified during experimentation, when a corner-style reflector was placed on a shake table running ground motion data taken from the 4th September 2010 earthquake in Christchurch. These results confirmed the conclusions drawn from simulation.