Search

found 37 results

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "This is the the top layer of liquefaction that has dried up in the hot sun. A broken eggshell is around 5 times stronger than these, but a fallen leaf is just not enough to break one. You can see underneath that the heavier sandy layer of liquefaction has dried and has cracked as well".

Images, UC QuakeStudies

Actor Tony Robinson at the "I hope Christchurch will..." blackboard, a mural on the corner of Colombo and Tuam Streets. Members of the public were invited to fill in the gaps with what they would like to see in the rebuilt city. Messages can be seen, such as, "I want sun!", "Embrace the new", "Retain its unique character", "Rise, and rise, and rise", "Rebuild to be better and stronger than before!" and "Environmentally friendly".

Articles, UC QuakeStudies

A PDF copy of a small advertisement from the All Right? 'Compliments' campaign that appeared in The Press on 4, 9, 14, 17, 19 and 23 December 2013. The advertisement reads, "You're lovelier than the summer sun in Hagley Park. Let's remember it's often the simple things that bring the most joy." The advertisement also includes the web address of the All Right? Facebook page and encourages the viewer to cut the compliment out to keep or share.

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "This is the result of liquefaction which spewed out after the double earthquake in Christchurch. Having flowed into a shallow depression that was deep enough for a fair quantity of the silty liquid to settle and separate: the heavy sand below and a talcum powder like substance on top. Some of these are so delicate that a mouse crossing them would probably crack them. Here the sun has dried them out and they have contracted and curled up towards their centres".

Images, Alexander Turnbull Library

The cartoon is headed 'Whitebait - How to spot the difference.' Below are two frames; the one on the left shows a brown fish wearing goggles and breathing apparatus, it is from the East Coast and is described as 'drab brown' and 'tastes like dung'; the one on the right is pink and wears a sun hat and sunglasses, it is from the West Coast and is described as 'lightly tanned' and 'tastes like coconut'. Context: The whitebait from the east coast has been contaminated by the Canterbury earthquakes. Quantity: 1 digital cartoon(s).

Research papers, Lincoln University

The scale of damage from a series of earthquakes across Christchurch Otautahi in 2010 and 2011 challenged all networks in the city at a time when many individuals and communities were under severe economic pressure. Historically, Maori have drawn on traditional institutions such as whanau, marae, hapu and iwi in their endurance of past crises. This paper presents research in progress to describe how these Maori-centric networks supported both Maori and non-Maori through massive urban dislocation. Resilience to any disaster can be explained by configurations of economic, social and cultural factors. Knowing what has contributed to Maori resilience is fundamental to the strategic enhancement of future urban communities - Maori and non-Maori.

Research papers, Victoria University of Wellington

“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011).  Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008).  In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists.  But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings.  Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch.  The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions.  Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities.  Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.