Search

found 44 results

Images, UC QuakeStudies

The front of Christ Church Cathedral. The upper part of the front wall has crumbled leaving the inside space exposed. Steel bracing has been placed against the front wall to limit further damage. The Citizens' Memorial statue stands to the left.

Images, UC QuakeStudies

A photograph of the entrance to Gap Filler's temporary outdoor cinema on the corner of Madras and St Asaph Streets. The entranceway is made of lights on a steel frame, and leads to a painted "red carpet".

Images, UC QuakeStudies

A digitally manipulated photograph of twisted reinforcing rods amongst the rubble from the demolition of QEII. The photographer comments, "These rarely seen worms live in the pressurised earth under the foundations of buildings. They need a damp soil and be under at least 100 pounds of pressure per square inch. After the destructive force of an earthquake they swiftly rise to the surface through gaps in the rubble. Unfortunately they quickly die and then crystallise as hard as iron in the dry low pressure air".

Images, UC QuakeStudies

The front of Christ Church Cathedral. The upper wall has crumbled leaving the inside space exposed. Steel bracing has been placed against the front wall to limit further damage. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral.

Images, UC QuakeStudies

A panoramic photograph taken at the front of Christ Church Cathedral. The front of the cathedral has steel bracing against it to limit further damage. The upper part of the front wall has crumbled completely, exposing the inside space. The Chalice sculpture is to the right and the BNZ building can be seen in the background.

Images, UC QuakeStudies

The front of Christ Church Cathedral. The upper part of the front wall has crumbled leaving the inside space exposed. Steel bracing has been placed against it to limit further damage. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral.

Images, UC QuakeStudies

Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.

Images, UC QuakeStudies

Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.

Images, UC QuakeStudies

Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.

Images, UC QuakeStudies

Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.

Images, UC QuakeStudies

The Wizard of Christchurch talks to a member of the public outside the damaged cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.

Images, UC QuakeStudies

A protest sign painted on a fence shows an image of the cathedral spire and the words "Save + restore, stone by precious stone!" The photographer comments, "The Christchurch Cathedral got very badly damaged in the earthquake. It was being demolished down to a safe level before a major protest managed to stop it going too far. There is still an ongoing debate on what to do with the Cathedral. In the meantime a cardboard cathedral made out of a steel framework and massive toilet roll tubes is being constructed close by. This is to the right of the protest about the closure of Christchurch schools".

Research papers, University of Canterbury Library

The recent earthquakes in Christchurch have made it clear that issues exist with current RC frame design in New Zealand. In particular, beam elongation in RC frame buildings was widespread and resulted in numerous buildings being rendered irreparable. Design solutions to overcome this problem are clearly needed, and the slotted beam is one such solution. This system has a distinct advantage over other damage avoidance design systems in that it can be constructed using current industry techniques and conventional reinforcing steel. As the name suggests, the slotted beam incorporates a vertical slot along part of the beam depth at the beam-column interface. Geometric beam elongation is accommodated via opening and closing of these slots during seismically induced rotations, while the top concrete hinge is heavily reinforced to prevent material inelastic elongation. Past research on slotted beams has shown that the bond demand on the bottom longitudinal reinforcement is increased compared with equivalent monolithic systems. Satisfying this increased bond demand through conventional means may yield impractical and economically less viable column dimensions. The same research also indicated that the joint shear mechanism was different to that observed within monolithic joints and that additional horizontal reinforcement was required as a result. Through a combination of theoretical investigation, forensic analysis, and database study, this research addresses the above issues and develops design guidelines. The use of supplementary vertical joint stirrups was investigated as a means of improving bond performance without the need for non-standard reinforcing steel or other hardware. These design guidelines were then validated experimentally with the testing of two 80% scale beam-column sub-assemblies. The revised provisions for bond within the bottom longitudinal reinforcement were found to be adequate while the top longitudinal reinforcement remained nominally elastic throughout both tests. An alternate mechanism was found to govern joint shear behaviour, removing the need for additional horizontal joint reinforcement. Current NZS3101:2006 joint shear reinforcement provisions were found to be more than adequate given the typically larger column depths required rendering the strut mechanism more effective. The test results were then used to further refine design recommendations for practicing engineers. Finally, conclusions and future research requirements were outlined.

Research papers, University of Canterbury Library

Drywalls are the typical infill or partitions used in new structures. They are usually located within structural frames and/or between upper and lower floor slabs in buildings. Due to the materials used in their construction, unlike masonry blocks, they can be considered as light non-structural infill/partition walls. These types of walls are especially popular in New Zealand and the USA. In spite of their popularity, little is known about their in-plane cyclic behaviour when infilled within a structural frame. The cause of this lack of knowledge can be attributed to the typical assumption that they are weak non-structural elements and are not expected to interact with the surrounding structural system significantly. However, recent earthquakes have repeatedly shown that drywalls interact with the structure and suffer severe damage at very low drift levels. In this paper, experimental test results of two typical drywall types (steel and timber framed) are reported in order to gather further information on; i) their reverse cyclic behaviour, ii) inter-storey drift levels at which they suffer different levels of damage, iii) the level of interaction with the surrounding structural frame system. The drywall specimens were tested using quasi-static reverse cyclic testing protocols within a full scale precast RC frame at the Structures Laboratory of the University of Canterbury.