CPL Willie Apiata shaking the hand of a Police Officer at the Christchurch Earthquake Memorial Service in Hagley Park.
Photograph captioned by BeckerFraserPhotos, "The violent shaking on February 22 snapped off this road sign. (Linwood Avenue)".
The devastation caused by the Christchurch earthquake has other cities reviewing how well they are prepared for a similar shake.
The devastation caused by the Christchurch earthquake has other cities reviewing how well they are prepared for a similar shake.
The head of the Canterbury Earthquake Recovery Authority, Roger Sutton, flew over the quake-hit city after today's first shake.
Four schools in quake hit Canterbury reopened today - the first since Saturday's shake closed about 165 schools in the area.
It's more tha 10 weeks since the seven point one magnitude Canterbury earthquake but the region continues to be shaken by aftershocks.
Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building nonskeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.
An earthquake engineering expert wants to change the way we predict how the ground will shake during an earthquake. Professor Brendon Bradley from the University of Canterbury is the recipient of a Marsden Fund grant to accelerate his research into seismic hazard analysis and forecasting. He says the idea is to get to a point where they can provide the same sort of information as a weather forecast. Professor Bradley says just like a severe weather warning, engineers would be able to provide information about severe ground shaking, how it varies locally in each city or suburb, and the likely consequence to buildings. Kathryn speaks to Professor Brendon Bradley, the director of Te Hirangu Ru QuakeCoRE - The New Zealand Centre for Earthquake Resilience.
Mayor Bob Parker shaking hands with Pro-Vice-Chancellor Lynn McClelland at an event to thank the Student Volunteer Army.
Wayne Mapp, the Minister of Defence, shaking the hand of an officer during his visit to the HMNZS Otago in Lyttelton.
One year on from the February 22nd earthquake, scientists are meeting to discuss how the science behind the shaking was communicated.
Earthquake engineers at the University of Canterbury are world-leaders in designing buildings that will be better able to withstand earthquake shaking.
A photograph of a sign reading, "Please slow down, your speed is shaking our homes." The photograph is captioned by Paul Corliss, "Kaiapoi".
A photograph of a sign reading, "Please slow down, your speed is shaking our homes." The photograph is captioned by Paul Corliss, "Kaiapoi".
A study by Canterbury University shows businesses have withstood the 7-point-one-magnitude Canterbury earthquake well.
Chief of the New Zealand Defence Force, Rhys Jones, shaking the hand of an officer during his visit to the HMNZS Otago in Lyttelton.
Christchurch residents will gather today to mark the tenth anniversary of the Christchurch Earthquake. The 6.2 magnitude quake killed 185 people and caused widespread destruction across the city. It hit at 12.51pm while many people were in the city centre, working, shopping or enjoying their lunch in the sunshine. This is where our coverage began. A warning this is confronting audio of events that day.
Photograph captioned by Fairfax, "Earthquake reminder: Wendy Quigley's 'You rock my world' t-shirts feature the time and date of the damaging 7.1 shake".
When the destructive February earthquake hit Christchurch, one of our reporters, Bridget Mills, was recording an interview at the very moment the earth started shaking.
When the destructive February earthquake hit Christchurch, one of our reporters, Bridget Mills, was recording an interview at the very moment the earth started shaking.
There are hopes an earthquake simulation in Porirua might result in homes being better prepared for a big shake. Houses on Christchurch's Port Hills suffered more damage than houses in other areas during the Canterbury Earthquakes - even though the ground shaking was roughly the same. Now the Earthquake Commission is on a mission to find out why that was - and prevent the same level of damage in a future quake. Checkpoint reporter Logan Church and video journalist Dom Thomas start their report up on a hilly farm above Wellington.
It is not a matter of if a major earthquake will happen in New Zealand, it is when. Earthquakes wreak havoc, cut off power and water supply, lines of communication, sewer, supply chains, and transport infrastructure. People get injured and whole communities can get cut off the rest of the country for extended periods of time. Countries taking measures to increase the population's preparedness tend to suffer less severe consequences than those that do not. Disaster management authorities deliver comprehensive instructions and preparation guidance, yet communities remain grossly underprepared. There are multiple factors that influence motivation for preparedness. Personal experience is one of the most significant factors that influence preparedness motivation. Not many people will experience a severe and damaging earthquake in their lifetime. A serious game (SG) that is a computer simulation of an earthquake is a tool that can let participants experience the earthquake and its aftermath from the safety of their computer. The main result of this research is a positive answer to the question: Can a serious game motivate people to prepare for earthquakes at least just as good as a personal experience of at least a moderate earthquake? There are different levels of immersion this serious game can be implemented at. In this thesis the same earthquake experience scenario – SG “ShakeUp” is implemented as a desktop application and a virtual reality (VR) application. A user study is conducted with the aim of comparing the motivation level achieved by the two versions of the SG “ShakeUp”. In this study no benefits of using VR over traditional desktop application were found: participants trying both versions of the SG “ShakeUp” reported similar levels of motivation to prepare for earthquakes immediately after the experiment. This means that both versions of the experience were equally effective in motivating participants to prepare for earthquakes. An additional benefit of this result is that the cheaper and easier to deliver desktop version can be widely used in various education campaigns. Participants reported being more motivated to prepare for earthquakes by either version of the SG “ShakeUp” than by any other contributing factor, including their previous earthquake experience or participation in a public education campaign. Both versions of the SG “ShakeUp” can successfully overcome personal bias, unrealistic optimism, pessimism, lack of perceived control over one’s earthquake preparation actions, fatalism, and sense of helplessness in the face of the earthquakes and motivate the individual to prepare for earthquakes. Participants without the prior earthquake experience benefit most from the SG “ShakeUp” regardless of the version tried, compared to the participants who had experienced an earthquake: significantly more of them will reconsider their current level of earthquake preparedness; about 24% more of them attribute their increased level of motivation to prepare for earthquakes to the SG “ShakeUp”. For every earthquake preparation action there is about 25% more people who felt motivated to do it after trying the SG “ShakeUp” than those who have done this preparation action before the experiment. After trying either version of the SG “ShakeUp”, people who live in a free standing house and those who live in a rental property reported highest levels of intent to carry on with the preparation actions. The proposed application prototype has been discussed with the University of Canterbury Earthquake Centre and received very positive feedback as having potential for practical use by various disaster management authorities and training institutions. The research shows that the SG “ShakeUp” motivates people to prepare for earthquakes as good as a personal earthquake experience and can be successfully used in various education campaigns.
The Christchurch earthquakes could prompt a further shake up of the insurance industry. Home owners are already being hit with premium increases of up to 30%.
A drain in an apartment driveway which has broken away from the curb during the shaking, and has a crack now visible on the left side.
A photograph of a sign reading "Please slow down, your speed is shaking our homes". The photograph is captioned by BeckerFraserPhotos, "Cass Street, Kaiapoi".
Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building non-skeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.
The cartoon shows the name 'Christchurch' shaking so that bits fly off it; the letters 'H', 'I', and 'T' spelling 'hit' are the only ones not shaking. A second version has the words 'Rock'n Roll' as a title. Refers to the earthquake of 4th September 2010 and its hundreds of aftershocks which continue on now into November. Two versions of this cartoon are available Quantity: 1 digital cartoon(s).
This research employs a deterministic seismic risk assessment methodology to assess the potential damage and loss at meshblock level in the Christchurch CBD and Mount Pleasant primarily due to building damage caused by earthquake ground shaking. Expected losses in terms of dollar value and casualties are calculated for two earthquake scenarios. Findings are based on: (1) data describing the earthquake ground shaking and microzonation effects; (2) an inventory of buildings by value, floor area, replacement value, occupancy and age; (3) damage ratios defining the performance of buildings as a function of earthquake intensity; (4) daytime and night-time population distribution data and (5) casualty functions defining casualty risk as a function of building damage. A GIS serves as a platform for collecting, storing and analyzing the original and the derived data. It also allows for easy display of input and output data, providing a critical functionality for communication of outcomes. The results of this study suggest that economic losses due to building damage in the Christchurch CBD and Mount Pleasant will possibly be in the order of $5.6 and $35.3 million in a magnitude 8.0 Alpine fault earthquake and a magnitude 7.0 Ashley fault earthquake respectively. Damage to non-residential buildings constitutes the vast majority of the economic loss. Casualty numbers are expected to be between 0 and 10.
Scientists studying last month's earthquake in Christchurch say the shaking was exacerbated by a slapdown or trampoline effect that made the land under the city bounce up and down.