John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
A page banner which is part of a series of banners about earthquake-related articles.
A presentation by Emma Kelland titled, "Masters in Environmental Science 690, Department of Geography". The presentation outlined the research Emma would undertake alongside Dr Deirdre Hart as part of her Masters Thesis.
Science education research shows that a traditional, stand-and-deliver lecture format is less effective than teaching strategies that are learner-centred and that promote active engagement. The Carl Wieman Science Education Initiative (CWSEI) has used this research to develop resources to improve learning in university science courses. We report on a successful adaptation and implementation of CWSEI in the New Zealand university context. This two-year project at Massey University and the University of Canterbury began by using perception and concept surveys before and after undergraduate science courses to measure students’ attitudes towards science as well as their knowledge. Using these data, and classroom observations of student engagement and corroborating focus groups, the research team worked with lecturers to create interventions to enhance student engagement and learning in those courses. Results show several positive changes related to these interventions and they suggest several recommendations for lecturers and course coordinators. The recommendations include:1. Make learning outcomes clear, both for the lecturer and the students; this helps to cull extraneous material and scaffold student learning. 2. Use interactive activities to improve engagement, develop deeper levels of thinking, and improve learning. 3. Intentionally foster “expert-like thinking” amongst students in the first few semesters of the degree programme. 4. Be flexible because one size does not fit all and contextual events are beyond anyone’s control.In addition to these recommendations, data collected at the Canterbury site during the 2010 and 2011 earthquakes reinforced the understanding that the most carefully designed teaching innovations are subject to contextual conditions beyond the control of academics.
The M7.8 Kaikoura Earthquake in 2016 presented a number of challenges to science agencies and institutions throughout New Zealand. The earthquake was complex, with 21 faults rupturing throughout the North Canterbury and Marlborough landscape, generating a localised seven metre tsunami and triggering thousands of landslides. With many areas isolated as a result, it presented science teams with logistical challenges as well as the need to coordinate efforts across institutional and disciplinary boundaries. Many research disciplines, from engineering and geophysics to social science, were heavily involved in the response. Coordinating these disciplines and institutions required significant effort to assist New Zealand during its most complex earthquake yet recorded. This paper explores that effort and acknowledges the successes and lessons learned by the teams involved.
A research report by Ju-Ting (Tania) Lee written in 2013 during her studies towards a Bachelor of Applied Science at Unitec Institute of Technology. The report explores the effects of the Christchurch earthquakes on the behaviour and well-being of cats and dogs, according to their owners.
Photograph captioned by Fairfax, "Mayor Bob Parker and his wife, Jo Nicholls-Parker, start the earthquake-stopped clock at Science Alive".
Photograph captioned by Fairfax, "Mayor Bob Parker and his wife, Jo Nicholls-Parker, start the earthquake-stopped clock at Science Alive".
UC student trainee science teacher Carrie Whyte helps out at a Papanui study centre, assisting Bopha Chea with her Art History assignment.
One year on from the February 22nd earthquake, scientists are meeting to discuss how the science behind the shaking was communicated.
UC student trainee science teacher Carrie Whyte helps out at a Papanui study centre, assisting Bopha Chea with her Art History assignment.
None
None
Our tech/science correspondent Peter Griffin takes a look at technology use after the Christchurch earthquake. Plus version 2 of the iPad.
Slides from the presentation by Dr Marlene Villeneuve (Department of Geological Sciences) on "Towards Understanding Mechanisms of Failure in the Port Hills and Banks Peninsula".
None
The Townsend Observatory is located in the Arts Centre of Christchurch, in what used to be Canterbury College (now University of Canterbury). The Townsend telescope itself is a historic 6-inch Cooke refractor built in 1864 for early Christchurch colonist, Mr James Townsend, and gifted by him to Christchurch College in 1891. At the same time, the Canterbury Astronomical Society handed over its funds to the College to help erect an observatory. The College used this, and money it had set aside for a medical school, to build a biological laboratory with an attached observatory tower, which was completed in 1896. The Biology Building and Observatory Tower was the last major design by architect Benjamin Mountfort. Mr Walter Kitson was appointed custodian of the telescope and regular public open nights commenced. and continued until 2010, with the telescope being operated by students of the Department of Physics and Astronomy, University of Canterbury. The Observatory Tower was badly damaged in the 4 September 2010 earthquake and collapsed in the 22 February 2011 earthquake. The telescope was badly damaged by the collapse, but, amazingly, the optics were found entirely intact. The Department of Physics and Astronomy plans to restore the Townsend Telescope so that it can be returned to a replica Observatory Tower in its central city home, enabling the people of Christchurch, and visitors, to enjoy views of the night sky through this beautiful and historic telescope once again.
Presentation by Associate Professor Kate Van Heugten (Human Services and Social Work Department) on "Challenges and Rewards of Working in the Human Services in the Aftermath of the Canterbury Earthquakes 2010/2011".
Slides from the presentation by Associate Professor Kate Van Heugten (Human Services and Social Work Department) on "Challenges and Rewards of Working in the Human Services in the Aftermath of the Canterbury Earthquakes 2010/2011".
Slides from a presentation by Dr Christopher Thomson (UC Digital Humanities Programme) on "CEISMIC and the Role of a Digital Archive".
Video of McKenzie's earthquake story, captured by the UC QuakeBox project.
A presentation by Dr Deirdre Hart at the New Zealand Coastal Science 20th Annual Conference. The presentation is titled, "Coastal Quakes: New Zealand's underrated hazard complex".
This report provides information on the locations and character of active geological faults and folds in Ashburton District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of permanent fault movement at the ground surface, and where more detailed investigations should be done if development is proposed in that area (depending on the potential activity of the fault and the type of development proposed). See Object Overview for background and usage information. Most of the faults and folds identified at the ground surface in Ashburton District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region.
This report assesses issues and options for preparing an earthquake hazard and risk assessment programme for Canterbury. It outlines investigation options and associated costs in order to better understand Canterbury's earthquake hazard and risk. Although earthquake hazard and risk information needs and investigation priorities within Canterbury have changed over the past 15 years, the majority of the report’s recommended components have been undertaken to some degree either by Environment Canterbury or other organisations. See Object Overview for background and usage information.
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This report provides information on the locations and character of active geological faults and folds in Mackenzie District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of fault movement, and where more detailed investigations should be done if development is proposed in that area(depending on the potential activity of the fault and the type of development proposed). Most of the faults and folds identified at the ground surface in Mackenzie District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region. See Object Overview for background and usage information.