Clock Tower at old ChCh central Train station (Now movie theatre and science alive activity centre) Cracked.. Badly
Disaster recovery involves the restoration, repair and rejuvenation of both hard and soft infrastructure. In this report we present observationsfrom seven case studies of collaborative planning from post-earthquake Canterbury, each of which was selected as a means of better understanding ‘soft infrastructure for hard times’. Though our investigation is located within a disaster recovery context, we argue that the lessons learned are widely applicable. Our seven case studies highlighted that the nature of the planning process or journey is as important as the planning objective or destination. A focus on the journey can promote positive outcomes in and of itself through building enduring relationships, fostering diverse leaders, developing new skills and capabilities, and supporting translation and navigation. Collaborative planning depends as much upon emotional intelligence as it does technical competence, and we argue that having a collaborative attitude is more important than following prescriptive collaborative planning formulae. Being present and allowing plenty of time are also key. Although deliberation is often seen as an improvement on technocratic and expertdominated decision-making models, we suggest that the focus in the academic literature on communicative rationality and discursive democracy has led us to overlook other more active forms of planning that occur in various sites and settings. Instead, we offer an expanded understanding of what planning is, where it happens and who is involved. We also suggest more attention be given to values, particularly in terms of their role as a compass for navigating the terrain of decision-making in the collaborative planning process. We conclude with a revised model of a (collaborative) decision-making cycle that we suggest may be more appropriate when (re)building better homes, towns and cities.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
None
None
Photograph captioned by Fairfax, "Mayor Bob Parker and his wife, Jo Nicholls-Parker, start the earthquake-stopped clock at Science Alive".
Photograph captioned by Fairfax, "Mayor Bob Parker and his wife, Jo Nicholls-Parker, start the earthquake-stopped clock at Science Alive".
A page banner which is part of a series of banners about earthquake-related articles.
A presentation by Emma Kelland titled, "Masters in Environmental Science 690, Department of Geography". The presentation outlined the research Emma would undertake alongside Dr Deirdre Hart as part of her Masters Thesis.
Science education research shows that a traditional, stand-and-deliver lecture format is less effective than teaching strategies that are learner-centred and that promote active engagement. The Carl Wieman Science Education Initiative (CWSEI) has used this research to develop resources to improve learning in university science courses. We report on a successful adaptation and implementation of CWSEI in the New Zealand university context. This two-year project at Massey University and the University of Canterbury began by using perception and concept surveys before and after undergraduate science courses to measure students’ attitudes towards science as well as their knowledge. Using these data, and classroom observations of student engagement and corroborating focus groups, the research team worked with lecturers to create interventions to enhance student engagement and learning in those courses. Results show several positive changes related to these interventions and they suggest several recommendations for lecturers and course coordinators. The recommendations include:1. Make learning outcomes clear, both for the lecturer and the students; this helps to cull extraneous material and scaffold student learning. 2. Use interactive activities to improve engagement, develop deeper levels of thinking, and improve learning. 3. Intentionally foster “expert-like thinking” amongst students in the first few semesters of the degree programme. 4. Be flexible because one size does not fit all and contextual events are beyond anyone’s control.In addition to these recommendations, data collected at the Canterbury site during the 2010 and 2011 earthquakes reinforced the understanding that the most carefully designed teaching innovations are subject to contextual conditions beyond the control of academics.
The M7.8 Kaikoura Earthquake in 2016 presented a number of challenges to science agencies and institutions throughout New Zealand. The earthquake was complex, with 21 faults rupturing throughout the North Canterbury and Marlborough landscape, generating a localised seven metre tsunami and triggering thousands of landslides. With many areas isolated as a result, it presented science teams with logistical challenges as well as the need to coordinate efforts across institutional and disciplinary boundaries. Many research disciplines, from engineering and geophysics to social science, were heavily involved in the response. Coordinating these disciplines and institutions required significant effort to assist New Zealand during its most complex earthquake yet recorded. This paper explores that effort and acknowledges the successes and lessons learned by the teams involved.
The new staff room at Avonside Girls High School with the new classrooms in the background. The photograph has been captioned by BeckerFraserPhotos, "Avonside Girls High School staff room. We spoke to two Science teachers who talked enthusiastically about their new Science labs and how great it was to return to their own campus again".
A research report by Ju-Ting (Tania) Lee written in 2013 during her studies towards a Bachelor of Applied Science at Unitec Institute of Technology. The report explores the effects of the Christchurch earthquakes on the behaviour and well-being of cats and dogs, according to their owners.
UC student trainee science teacher Carrie Whyte helps out at a Papanui study centre, assisting Bopha Chea with her Art History assignment.
One year on from the February 22nd earthquake, scientists are meeting to discuss how the science behind the shaking was communicated.
UC student trainee science teacher Carrie Whyte helps out at a Papanui study centre, assisting Bopha Chea with her Art History assignment.
Our tech/science correspondent Peter Griffin takes a look at technology use after the Christchurch earthquake. Plus version 2 of the iPad.
None
None
A zip file of an interactive 360-degree panoramic photograph in HTML5 format. The photograph was taken at the University of Canterbury, near Science Road on 26 January 2012.
Slides from the presentation by Dr Marlene Villeneuve (Department of Geological Sciences) on "Towards Understanding Mechanisms of Failure in the Port Hills and Banks Peninsula".
The Townsend Observatory is located in the Arts Centre of Christchurch, in what used to be Canterbury College (now University of Canterbury). The Townsend telescope itself is a historic 6-inch Cooke refractor built in 1864 for early Christchurch colonist, Mr James Townsend, and gifted by him to Christchurch College in 1891. At the same time, the Canterbury Astronomical Society handed over its funds to the College to help erect an observatory. The College used this, and money it had set aside for a medical school, to build a biological laboratory with an attached observatory tower, which was completed in 1896. The Biology Building and Observatory Tower was the last major design by architect Benjamin Mountfort. Mr Walter Kitson was appointed custodian of the telescope and regular public open nights commenced. and continued until 2010, with the telescope being operated by students of the Department of Physics and Astronomy, University of Canterbury. The Observatory Tower was badly damaged in the 4 September 2010 earthquake and collapsed in the 22 February 2011 earthquake. The telescope was badly damaged by the collapse, but, amazingly, the optics were found entirely intact. The Department of Physics and Astronomy plans to restore the Townsend Telescope so that it can be returned to a replica Observatory Tower in its central city home, enabling the people of Christchurch, and visitors, to enjoy views of the night sky through this beautiful and historic telescope once again.
None
Presentation by Associate Professor Kate Van Heugten (Human Services and Social Work Department) on "Challenges and Rewards of Working in the Human Services in the Aftermath of the Canterbury Earthquakes 2010/2011".
Slides from the presentation by Associate Professor Kate Van Heugten (Human Services and Social Work Department) on "Challenges and Rewards of Working in the Human Services in the Aftermath of the Canterbury Earthquakes 2010/2011".
Slides from a presentation by Dr Christopher Thomson (UC Digital Humanities Programme) on "CEISMIC and the Role of a Digital Archive".
Video of McKenzie's earthquake story, captured by the UC QuakeBox project.