A video clip of a large-scale, temporary installation titled Aurora. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Aurora. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of students from Unitec working on a large-scale, temporary installation titled Influx. Influx was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Aurora. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Aurora. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
Wellington is located on a fault line which will inevitably, one day be impacted by a big earthquake. Due to where this fault line geographically sits, the central city and southern suburbs may be cut off from the rest of the region, effectively making these areas an ‘island’. This issue has absorbed a lot of attention, in particular at a large scale by many different fields: civil engineering, architecture, infrastructure planning & design, policymaking. Due to heightened awareness, and evolved school of practice, contemporary landscape architects deal with post-disaster design – Christchurch, NZ has seen this. A number of landscape architects work with nature, following increased application of ecological urbanism, and natural systems thinking, most notably at larger scales. To create parks that are designed to flood, or implement projects to protect shorelines. A form of resilience less often considered is how design for the small scale - people’s 1:1 relationship with their immediate context in exterior space - can be influential in forming a resilient response to the catastrophe of a major earthquake. This thesis intends to provide a response to address the shift of scales, as a paradigm for preparation and recovery. After a large-scale earthquake, state and civic policies and agencies may or subsequentially not go into action. The most important thinking and acting will be what happens in the minds, and the immediate needs, of each and every person; and how they act communally. This is considered in general social terms in state and civic education programmes of civil defence, for example, but much less considered in how the physical design of the actual spaces we inhabit day-to-day can educate us to be mentally prepared to help each other survive a catastrophe. Specifically, the identification of design of typologies can provide these educative functions. Typology inherently a physical form or manipulation of a generic and substantial prototype applicable in contexts is something that exists in the mind. Working with the physical and social appearance and experience of typologies can also/will change people’s minds. Socially, and economically driven, the community-building power of community gardening is well-proven and documented, and a noticeably large part of contemporary landscape architecture. The designs of this thesis will focus on community gardening specifically to form typologies of resilience preparation and response to disaster. The foundation will remain at the small scale of the local community. The specific question this thesis poses: Can we design local typologies in landscape architecture to integrate community gardens, with public space by preparing for and acting as recovery from a disaster?
A video clip of a large-scale, temporary installation titled Upload. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Equilibrium. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Equilibrium. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
This report describes the earthquake hazard in Waimakariri district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. See Object Overview for background and usage information.
Environmental stress and disturbance can affect the structure and functioning of marine ecosystems by altering their physical, chemical and biological features. In estuaries, benthic invertebrate communities play important roles in structuring sediments, influencing primary production and biogeochemical flux, and occupying key food web positions. Stress and disturbance can reduce species diversity, richness and abundance, with ecological theory predicting that biodiversity will be at its lowest soon after a disturbance with assemblages dominated by opportunistic species. The Avon-Heathcote Estuary in Christchurch New Zealand has provided a novel opportunity to examine the effects of stress, in the form of eutrophication, and disturbance, in the form of cataclysmic earthquake events, on the structure and functioning of an estuarine ecosystem. For more than 50 years, large quantities (up to 500,000m3/day) of treated wastewater were released into this estuary but in March 2010 this was diverted to an ocean outfall, thereby reducing the nutrient loading by around 90% to the estuary. This study was therefore initially focussed on the reversal of eutrophication and consequent effects on food web structure in the estuary as it responded to lower nutrients. In 2011, however, Christchurch was struck with a series of large earthquakes that greatly changed the estuary. Massive amounts of liquefied sediments, covering up to 65% of the estuary floor, were forced up from deep below the estuary, the estuary was tilted by up to a 50cm rise on one side and a corresponding drop on the other, and large quantities of raw sewage from broken wastewater infrastructure entered the estuary for up to nine months. This study was therefore a test of the potentially synergistic effects of nutrient reduction and earthquake disturbance on invertebrate communities, associated habitats and food web dynamics. Because there was considerable site-to-site heterogeneity in the estuary, the sites in this study were selected to represent a eutrophication gradient from relatively “clean” (where the influence of tidal flows was high) to highly impacted (near the historical discharge site). The study was structured around these sites, with components before the wastewater diversion, after the diversion but before the earthquakes, and after the earthquakes. The eutrophication gradient was reflected in the composition and isotopic chemistry of primary producer and invertebrate communities and the characteristics of sediments across the sample sites. Sites closest to the former wastewater discharge pipe were the most eutrophic and had cohesive organic -rich, fine sediments and relatively depauperate communities dominated by the opportunistic taxa Capitellidae. The less-impacted sites had coarser, sandier sediments with fewer pollutants and far less organic matter than at the eutrophic sites, relatively high diversity and lower abundances of micro- and macro-algae. Sewage-derived nitrogen had became incorporated into the estuarine food web at the eutrophic sites, starting at the base of the food chain with benthic microalgae (BMA), which were found to use mostly sediment-derived nitrogen. Stable isotopic analysis showed that δ13C and δ15N values of most food sources and consumers varied spatially, temporally and in relation to the diversion of wastewater, whereas the earthquakes did not appear to affect the overall estuarine food web structure. This was seen particularly at the most eutrophic site, where isotopic signatures became more similar to the cleaner sites over two-and-a-half years after the diversion. New sediments (liquefaction) produced by the earthquakes were found to be coarser, have lower concentrations of heavy metals and less organic matter than old (existing) sediments. They also had fewer macroinvertebrate inhabitants initially after the earthquakes but most areas recovered to pre-earthquake abundance and diversity within two years. Field experiments showed that there were higher amounts of primary production and lower amounts of nutrient efflux from new sediments at the eutrophic sites after the earthquakes. Primary production was highest in new sediments due to the increased photosynthetic efficiency of BMA resulting from the increased permeability of new sediments allowing increased light penetration, enhanced vertical migration of BMA and the enhanced transport of oxygen and nutrients. The reduced efflux of NH4-N in new sediments indicated that the capping of a large portion of eutrophic old sediments with new sediments had reduced the release of legacy nutrients (originating from the historical discharge) from the sediments to the overlying water. Laboratory experiments using an array of species and old and new sediments showed that invertebrates altered levels of primary production and nutrient flux but effects varied among species. The mud snail Amphibola crenata and mud crab Austrohelice crassa were found to reduce primary production and BMA biomass through the consumption of BMA (both species) and its burial from bioturbation and the construction of burrows (Austrohelice). In contrast, the cockle Austrovenus stutchburyi did not significantly affect primary production and BMA biomass. These results show that changes in the structure of invertebrate communities resulting from disturbances can also have consequences for the functioning of the system. The major conclusions of this study were that the wastewater diversion had a major effect on food web dynamics and that the large quantities of clean and unpolluted new sediments introduced to the estuary during the earthquakes altered the recovery trajectory of the estuary, accelerating it at least throughout the duration of this study. This was largely through the ‘capping’ effect of the new liquefied, coarser-grained sediments as they dissipated across the estuary and covered much of the old organic-rich eutrophic sediments. For all aspects of this study, the largest changes occurred at the most eutrophic sites; however, the surrounding habitats were important as they provided the context for recovery of the estuary, particularly because of the very strong influence of sediments, their biogeochemistry, microalgal and macroalgal dynamics. There have been few studies documenting system level responses to eutrophication amelioration and to the best on my knowledge there are no other published studies examining the impacts of large earthquakes on benthic communities in an estuarine ecosystem. This research gives valuable insight and advancements in the scientific understanding of the effects that eutrophication recovery and large-scale disturbances can have on the ecology of a soft-sediment ecosystem.
A video clip depicting part of a large-scale, temporary installation titled Antigravity. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of two large-scale, temporary installations titled Upload (left) and Equilibrium (right). The installations were created by students from The University of Auckland, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ScopeCity. The installation is on Manchester Street. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of two large-scale, temporary installations titled Aurora (front) and Synthesis (back, left). The installations were created by students from Unitec and CPIT, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of two large-scale, temporary structures, titled Synthesis and Aurora, being installed by students from CPIT and Unitec. The installations were part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled GlowCity. The installation is on Manchester Street. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled GlowCity. The installation is on Manchester Street. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of two large-scale, temporary installations titled Aurora (front) and Synthesis (back, left). The installations were created by students from Unitec and CPIT, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people dancing inside a large-scale, temporary installation titled Equilibrium. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.
Topics - New Zealand could begin full-scale military exercises with the United States within a year. A reported doubling of the number of supernatural events in Canterbury has been attributed to the 'sheer strength and power' of the September 4 earthquake, by a paranormal investigator.
A video clip of a large-scale, temporary installation titled Synthesis. The installation is on the corner of High Street. The installation was created by students from CPIT for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Antigravity. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of several large-scale, temporary installations on the corner of High and Lichfield Streets, and the corner of Lichfield and Manchester Streets. The installations are part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people walking through a large-scale, temporary installation titled ScopeCity. The installation is on Manchester Street. The installation was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of children playing with inflatable balls inside a large-scale, temporary installation titled Upload. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Antigravity. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Continuum. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
Bulk rock strength is greatly dependent on fracture density, so that reductions in rock strength associated with faulting and fracturing should be reflected by reduced shear coupling and hence S-wave velocity. This study is carried out along the Canterbury rangefront and in Otago. Both lie within the broader plate boundary deformation zone in the South Island of New Zealand. Therefore built structures are often, , located in areas where there are undetected or poorly defined faults with associated rock strength reduction. Where structures are sited near to, or across, such faults or fault-zones, they may sustain both shaking and ground deformation damage during an earthquake. Within this zone, management of seismic hazards needs to be based on accurate identification of the potential fault damage zone including the likely width of off-plane deformation. Lateral S-wave velocity variability provides one method of imaging and locating damage zones and off-plane deformation. This research demonstrates the utility of Multi-Channel Analysis of Surface Waves (MASW) to aid land-use planning in such fault-prone settings. Fundamentally, MASW uses surface wave dispersive characteristics to model a near surface profile of S-wave velocity variability as a proxy for bulk rock strength. The technique can aid fault-zone planning not only by locating and defining the extent of fault-zones, but also by defining within-zone variability that is readily correlated with measurable rock properties applicable to both foundation design and the distribution of surface deformation. The calibration sites presented here have well defined field relationships and known fault-zone exposure close to potential MASW survey sites. They were selected to represent a range of progressively softer lithologies from intact and fractured Torlesse Group basement hard rock (Dalethorpe) through softer Tertiary cover sediments (Boby’s Creek) and Quaternary gravels. This facilitated initial calibration of fracture intensity at a high-velocity-contrast site followed by exploration of the limits of shear zone resolution at lower velocity contrasts. Site models were constructed in AutoCAD in order to demonstrate spatial correlations between S-wave velocity and fault zone features. Site geology was incorporated in the models, along with geomorphology, river profiles, scanline locations and crosshole velocity measurement locations. Spatial data were recorded using a total-station survey. The interpreted MASW survey results are presented as two dimensional snapshot cross-sections of the three dimensional calibration-site models. These show strong correlations between MASW survey velocities and site geology, geomorphology, fluvial profiles and geotechnical parameters and observations. Correlations are particularly pronounced where high velocity contrasts exist, whilst weaker correlations are demonstrated in softer lithologies. Geomorphic correlations suggest that off-plane deformation can be imaged and interpreted in the presence of suitable topographic survey data. A promising new approach to in situ and laboratory soft-rock material and mass characterisation is also presented using a Ramset nail gun. Geotechnical investigations typically involve outcrop and laboratory scale determination of rock mass and material properties such as fracture density and unconfined compressive strength (UCS). This multi-scale approach is espoused by this study, with geotechnical and S-wave velocity data presented at multiple scales, from survey scale sonic velocity measurements, through outcrop scale scanline and crosshole sonic velocity measurements to laboratory scale property determination and sonic velocity measurements. S-wave velocities invariably increased with decreasing scale. These scaling relationships and strategies for dealing with them are investigated and presented. Finally, the MASW technique is applied to a concealed fault on the Taieri Ridge in Macraes Flat, Central Otago. Here, high velocity Otago Schist is faulted against low velocity sheared Tertiary and Quaternary sediments. This site highlights the structural sensitivity of the technique by apparently constraining the location of the principal fault, which had been ambiguous after standard processing of the seismic reflection data. Processing of the Taieri Ridge dataset has further led to the proposal of a novel surface wave imaging technique termed Swept Frequency Imaging (SFI). This inchoate technique apparently images the detailed structure of the fault-zone, and is in agreement with the conventionally-determined fault location and an existing partial trench. Overall, the results are promising and are expected to be supported by further trenching in the near future.