A 'sand volcano' of liquefaction silt. The photograph has been rotated 180 degrees. The photographer comments, "This could be just a horrible hole caused by liquefaction pouring out of a hole after the Christchurch earthquake in January, but turn it upside down and it becomes an outcrop on the floor of an unseen tidal estuary".
A photograph of a garage which has sunk into liquefaction on one side. The photograph is captioned by BeckerFraserPhotos, "New Brighton Road".
A photograph of a garage which has sunk into liquefaction on one side. The photograph is captioned by BeckerFraserPhotos, "New Brighton Road".
A photograph captioned by BeckerFraserPhotos, "The rear of 14 Waygreen Avenue showing liquefaction nearly a metre deep around the clothes line".
A photograph captioned by BeckerFraserPhotos, "The rear of 14 Waygreen Avenue showing liquefaction nearly a metre deep around the clothes line".
A digitally manipulated image of printer's type, spelling out "Safe Dust". The photographer comments, "After the September 2010 Christchurch earthquake liquefaction poured out of the ground mostly in the East of Christchurch. This silt, which was a form of sand was declared safe and would not harm gardens if it was spread around in moderation. After the February 2011 quake as a result of even more liquefaction and the sewers being ruptured, the liquefaction was declared as toxic. People clearing it up should wear a mask, boots and gloves especially when it had dried up and become dusty. This just so happens to be the words found on an old printing press".
A photograph captioned by BeckerFraserPhotos, "24 Seabreeze Close, Bexley. The door is permanently open because of the liquefaction silt, but there is no-one home to welcome you in".
A photograph of liquefaction in front of a house. The photograph is captioned by BeckerFraserPhotos, "It would be very hard work opening that door. 22 Seabreeze Close, Bexley".
Liquefaction silt and weeds on the footpath outside the central library.
Photograph captioned by BeckerFraserPhotos, "Waygreen Avenue in New Brighton. This residential street was badly impacted by liquefaction and is now red zoned. Stagnant water still rests in several places in the street".
The Darfield earthquake caused widespread damage in the Canterbury region of New Zealand, with the majority of damage resulting from liquefaction and lateral spreading. One of the worst hit locations was the small town of Kaiapoi north of Christchurch, an area that has experienced liquefaction during past events and has been identified as highly susceptible to liquefaction. The low lying town sits on the banks of the Kaiapoi River, once a branch of the Waimakariri, a large braided river transporting gravelly sediment. The Waimakariri has been extensively modified both by natural and human processes, consequently many areas in and around the town were once former river channels.
A photograph captioned by BeckerFraserPhotos, "Another way of demonstrating how high the liquefaction is piled up in the garden of this house is how little room there is under the eaves of this house at 22 Seabreeze Close, Bexley".
In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.
The road and footpath are covered in silt from liquefaction in a residential area.
The road and footpath are covered in silt from liquefaction in a residential area.
The road and footpath are covered in silt from liquefaction in a residential area.
The road and footpath are covered in silt from liquefaction in a residential area.
Photograph captioned by BeckerFraserPhotos, "Blue Lagoon Drive in Brooklands. The whole of this street is red zoned land. Some of the homeowners are unhappy with the land zoning as they believe that their area has much less impact from liquefaction than other red zoned areas. Some of the street lights are leaning, but the road seems in very good condition for a red zoned street and there is little evidence of liquefaction. Most red zoned streets have none of their original surface left, and the liquefaction is evident on all the verges and gardens".
The road, driveway and footpath are covered in silt from liquefaction in a residential area.
The road, driveway and footpath are covered in silt from liquefaction in a residential area.
The road, driveway and footpath are covered in silt from liquefaction in a residential area.
The road, driveway and footpath are covered in silt from liquefaction in a residential area.
The road, driveway and footpath are covered in silt from liquefaction in a residential area.
The road, driveway and footpath are covered in silt from liquefaction in a residential area.
A photograph of detail of a damaged house. The photograph is captioned by BeckerFraserPhotos, "Seabreeze Close, Bexley".
A residential street in New Brighton. Liquefaction still lines the street, and lampposts are leaning in different directions. The photographer comments, "This is the New Brighton red zone, which is parallel to the Avon River. The area suffered serious liquefaction during the numerous earthquakes/aftershocks and the land is being bought by the government. Although the houses do not look too bad in the background they have suffered badly. On the day I took this picture the council had just hours before cut the grass, which made the area look less abandoned".
A pond in Hagley Park, some dried liquefaction are visible at the edges of the pond.
A pond in Hagley Park, some dried liquefaction are visible at the edges of the pond.
The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.
Liquefaction silt and broken paving in front of the floral clock in Victoria Square, seen through cordon fencing.