In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.
The construction of government buildings have long attracted opinion and criticism and the Italian Renaissance style Government Buildings on the corner of Worcester street and Cathedral Square were…
A page banner promoting an article about New Brighton's future.
A page banner promoting an article titled, "(Re)building your future".
Tommy discusses future building procedures in response to the Christchurch earthquake.
Board Chair of the Christchurch Symphony Orchestra on the future of the ensemble post-earthquake.
An infographic showing differing views on the future of ChristChurch Cathedral.
Site is a contemporary art/architecture/media proposal for inner-city living in Christchurch. Originated prior to the 4 Sept. 2010 earthquake, in response to a Christchurch City Council plan to increase the number of central city residents. Includes a video file and blog, including archive.
The Government has confirmed it is closely monitoring the insurer, AMI, whose $1 Billion in reinsurance and capital is believed to have been exhausted by the two Canterbury earthquakes.
The front page graphic for The Press. The main headline reads, "Facing the future".
The front page graphic for a Press special feature titled, "The future of Christchurch".
A page banner promoting the At Home section of The Press, featuring articles on Christchurch's future.
People in Sumner with earthquake-damaged homes are demanding answers from the Christchurch City Council about the future of their properties.
After commemorating the anniversary of last year's deadly earthquake in Christchurch, many are now looking to the region's future.
The Anglican church yesterday announced members of Canterbury's synod will now decide the earthquake damaged cathedral's future at its meeting in September.
Still standing in Jan 2011 - but the buildings future is unknown - It is probably destined to be demolished.
Some of Christchurch's earthquake damaged red-zone land is another step closer to having some long term decisions made about its future. Today the Minister of Greater Christchurch Regeneration, Megan Woods, formally handed over ownership of 70 hectares of land to the Christchurch City Council. The land gifted to the council is in the coastal suburbs of Southshore, South Brighton and Brooklands, where residents have been waiting almost a decade to find out what the future holds for their area. Rachel Graham reports
A video of a presentation by Professor Chris Kissling, Fellow of the Chartered Institute of Logistics and Transport, at the 2016 Seismics in the City Conference. The presentation is titled, "Transport Roles in Helping Shape Canterbury's Post-earthquakes Future".The abstract for the presentation reads, "The necessity for embracing integrated transportation solutions to meet emerging societal needs."
New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance which aligns with New Zealand design codes requirements. However, poor performance was reported in terms of their seismic resilience that can be generally associated with community demands. Future expectations of the seismic performance of wooden-framed houses by homeowners were assessed in this research. Homeowners in the Wellington region were asked in a survey about the levels of safety and expected possible damage in their houses after a seismic event. Findings bring questions about whether New Zealand code requirements are good enough to satisfy community demands. Also, questions whether available information of strengthening techniques to structurally prepare wooden-framed houses to face future major earthquakes can help to make homeowners feel safer at home during major seismic events.
The Christchurch city and Waimakariri District councils have from today got no insurance cover for future earthquakes after their existing policies expired at 4pm.
Lincoln University was commissioned by the Avon-Otakaro Network (AvON) to estimate the value of the benefits of a ‘recreation reserve’ or ‘river park’ in the Avon River Residential Red Zone (ARRRZ). This research has demonstrated significant public desire and support for the development of a recreation reserve in the Avon River Residential Red Zone. Support is strongest for a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision, such as walking, cycling and water-based sporting and leisure activities. The research also showed support for a reserve that promotes and enables community interaction and wellbeing, and is evident in respondents’ desires for community gardens, regular festivals and markets, and the physical linking of the CBD with eastern suburbs through a green corridor. There is less support for children’s playgrounds, sports fields or open grassed areas, all of which could be considered as more typical of an urban park development. Benefits (willing to pay) to Christchurch residents (excluding tourists) of a recreation reserve could be as high as $35 million each year. Savings to public health costs could be as high as $50.3 million each year. The incorporation or restoration of various ecosystems services, including water quality improvements, flood mitigation and storm water management could yield a further $8.8 million ($19, 600) per hectare/year at 450 ha). Combined annual benefits of a recreational reserve in the ARRRZ are approximately $94.1 million per annum but this figure does not include potentially significant benefits from, for example, tourism, property equity gains in areas adjacent to the reserve, or the effects of economic rejuvenation in the East. Although we were not able to provide costing estimates for park attributes, this study does make available the value of benefits, which can be used as a guide to the scope of expenditure on development of each park attribute.
Residents in one of the streets worst affected by the Canterbury earthquake say they're still in the dark about their future.
Damage to the Durham Street Methodist Church. The windows have been boarded up, and the wall is reinforced with steel bracing to prevent any future damage.
Christchurch artist Phillip Trusttum and gallery owner Jonathan Smart on how visual artists are accepting what's been lost and looking to the future, post the earthquake.
A video clip of people visiting CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
One of the Christchurch suburbs badly hit in the Canterbury earthquakes is being rebranded as the Sydenham Quarter - a future haven for artists, artisans and industrialists alike.
A video clip of people visiting CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people visiting CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people visiting CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people visiting CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.