Search

found 64 results

Images, eqnz.chch.2010

Oxford Terrace Baptist Church on the corner of Madras St and Oxford Terrace, and alongside the Central City Fire Station on Kilmore St.

Images, eqnz.chch.2010

Oxford Terrace Baptist Church on the corner of Madras St and Oxford Terrace, and alongside the Central City Fire Station on Kilmore St. The organ pipes have been saved and safely removed into safe keeping by the South Island Organ Company.

Videos, UC QuakeStudies

A video about the 4 September 2010 earthquake, produced for the anniversary of the earthquake. The video includes footage of the earthquake damage to the Christchurch city centre, Darfield, Rolleston, and Hororata. It also includes footage of diggers clearing stock in the Canterbury Brewery on St Asaph Street, engineers checking buildings in town, and a fire on Worcester Street.

Videos, UC QuakeStudies

A compilation video of footage about the 4 September 2010 earthquake. The video includes footage of the damage to the central city, members of the police guarding cordons, residents at a Civil Defence Emergency Centre, a fire on Worcester Street, and aerial footage of New Brighton, the central city, and Homebush. It also includes an interview with local resident Quentin Garlick, and a press conference with Mayor Bob Parker outside the Christchurch Art Gallery.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Prime Minister John Key, centre, visited Christchurch after its 7.1 magnitude earthquake at 04:35 Saturday morning. Mayor Bob Parker took him on a tour of the city which was punctuated by a fire breaking out in a building on Worcester Street. MP John Carter, and Key look at the damage".

Images, UC QuakeStudies

A digger demolishing the Ozone Dressing Sheds building. The photographer comments, "This is the end of the Ozone Dressing Sheds built in 1914. The two storey Ozone Cafe, which was a hotel, will be given it's coup de grace on Friday. They were gutted in a spectacular fire in 1922, but were unable to be saved after the Christchurch earthquake on 22 February 2011".

Images, eqnz.chch.2010

The old (or is that the new) Inland Revenue Department (IRD) building on the corner of Madras and Cashel Streets in central Christchurch. Built in 2006/07 on the site of the former Farmers department store (itself badly damaged by fire), it was just a few years old when the earthquake of February 2011 struck, and subsequent quakes (all through 2...

Images, Alexander Turnbull Library

The cartoon is a spoof of Rodin's famous sculpture 'The thinker' and shows it with a globe for its head. It holds a newspaper that reads 'Massive 'quake in Japan - ChCh. 'quake, China 'quake, Aus. Floods fires etc. etc.' The thinker ponders 'What's with all these disasters?..' Context - The massive earthquake in Japan that led to a devastating tsunami and now threats from several damaged nuclear power stations, the earthquakes in Christchurch on 4 September 2010 and 22 February 2011, the 5.8-magnitude earthquake in Yingjiang County, southwest China's Yunnan Province on March 15, 2011, and the January floods in Queensland, Australia, as well as bush fires on the outskirts of the Western Australia capital Perth. Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

A review of the week's news including... National MP Todd Barclay falls on his sword while Labour is in damage control, the decision to not prosecute the Pike River Mine CEO is to be contested in the Supreme Court, the lawyer for Akshay Chand says she sought bail on his behalf believing his mother and aunt would monitor his every movement, The Education Ministry is forced to apologise for its flawed handling of school closures and mergers after the 2011 Canterbury earthquake, The Health Minister is forced to defend his embattled Ministry following a major budget blunder, employment lawyers aren't surprised another health sector group is taking a pay equity claim, Ministry for Primary Industries officials come under fire at a packed Stewart Island public meeting on the cull of the island's farmed oysters, it's Plan B for a crowd funded initiative that wants to take control of Dunedin's Cadbury factory and All Black great Sir Colin 'pinetree' Meads has been immortalised in bronze.

Research papers, University of Canterbury Library

Field surveys and experimental studies have shown that light steel or timber framed plasterboard partition walls are particularly vulnerable to earthquake damage prompting the overarching objective of this research, which is to further the development of low damage seismic systems for non-structural partition walls in order to facilitate their adoption by industry to assist with reducing the losses associated with the maintenance and repair cost of buildings across their design life. In particular, this study focused on the behaviour of steel-framed partition walls systems with novel detailing that aim to be “low-damage” designed according to common practice for walls used in commercial and institutional buildings in New Zealand. This objective was investigated by (1) investigating the performance of a flexible track system proposed by researchers and industry by experimental testing of full-scale specimens; (2) investigating the performance of the seismic gap partition wall systems proposed in a number of studies, further developed in this study with input from industry, by experimental testing of full-scale specimens; and (3) investigating the potential implications of using these systems compared with traditionally detailed partition wall systems within multi-storey buildings using the Performance Based Earthquake Engineering loss assessment methodology. Three full-scale testing frames were designed in order to replicate, under controlled laboratory conditions, the effects of seismic shaking on partition walls within multi-storey buildings by the application of quasi-static uni-directional cyclic loading imposing an inter-storey drift. The typical configuration for test specimens was selected to be a unique “y-shape”, including one angled return wall, with typical dimensions of approximately 2400 mm along the main wall and 600 mm along (approximately) the returns walls with a height of 2405 mm from floor to ceiling. The specimens were aligned within test frames at an oblique angle to the direction of loading in order to investigate bi- directional effects. Three wall specimens with flexible track detailing, two identical plane specimens and the third including a doorway, were tested. The detailing involved removing top track anchors within the proximity of wall intersections, thus allowing the tracks to ‘bow’ out at these locations. Although the top track anchors were specified to be removed the proximity of wall intersections, a construction error was made whereby a single top track slab to concrete anchor was left in at the three-way wall junction. Despite this error, the experimental testing was deemed worthwhile since such errors will also occur in practice and because the behaviour of the wall can be examined with this fixing in mind. The specimens also included an acoustic/fire sealant at the top lining to floor boundary. In addition to providing drift capacities, the force-displacement behaviour is also reported, the dissipated energy was computed, and the parameters of the Wayne-Stewart hysteretic model were fitted to the results. The specimen with the door opening behaved significantly different to the plane specimens: damage to the doorway specimen began as cracking of the wallboard propagating from the corners of the doorway following which the L- and Y- shaped junctions behaved independently, whereas damage to the plane specimens began as cracking of the wallboard at the top of the L-junction and wall system deformed as a single unit. The results suggest that bi-directional behaviour is important even if its impact cannot be directly quantified by the experiments conducted. Damage to sealant implies that the bond between plasterboard and sealant is important for its seismic performance. Careful quality control is advised as defects in the bond may significantly impact its ability to withstand seismic movement. Two specimens with seismic gap detailing were tested: a steel stud specimen and a timber stud specimen. Observed drift capacities were significantly greater than traditional plasterboard partition systems. Equations were used to predict the drift at which damage state 1 (DS1) and damage state 2 (DS2) would initiate. The equation used to estimate the drift at the onset of DS1 accurately predicted the onset of plaster cracking but overestimated the drift at which the gap filling material was damaged. The equation used to predict the onset of DS2 provided a lower bound for both specimens and also when used to predict results of previous experimental tests on seismic gap systems. The gap-filling material reduced the drift at the onset of DS1, however, it had a beneficial effect on the re-centring behaviour of the linings. Out-of-plane displacements and return wall configuration did not appear to significantly impact the onset of plaster cracking in the specimens. A loss assessment according to the PBEE methodology was conducted on four steel MRF case study buildings: (1) a 4-storey building designed for the Christchurch region, (2) a 4-storey building designed for the Wellington region, (3) a 12-storey building designed for the Christchurch region, and (4) a 12- storey building designed for the Wellington region. The fragility parameters for a traditional partition system, the flexible track partition system, and the seismic gap steel stud and timber stud partition systems were included within the loss assessment. The order (lowest to highest) of each system in terms of the expected annual losses of each building when incorporating the system was, (1) the seismic gap timber stud system, (2) the seismic gap steel stud system, (3) the traditional/baseline system, and (4) the flexible track system. For the seismic gap timber stud system, which incurred the greatest reduction in expected annual losses for each case study building, the reduction in expected annual losses in comparison to the losses found when using the traditional system ranged from a 5% to a 30% reduction. This reinforces the fact that while there is a benefit to the using low damage partition systems in each building the extent of reduction in expected annual losses is significantly dependent on the particular building design and its location. The flexible track specimens had larger repair costs at small hazard levels compared to the traditional system but smaller repair costs at larger hazard levels. However, the resulting expected annual losses for the flexible track system was higher than the traditional system which reinforces findings from past studies which observed that the greatest contribution to expected annual losses arises from low to moderate intensity shaking seismic events (low hazard levels).