Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
An entry from Ruth Gardner's Blog for 21 November 2013 entitled, "Play Park".
An entry from Ruth Gardner's Blog for 09 May 2014 entitled, "Restoring the River".
An entry from Ruth Gardner's blog for 1 August 2012 entitled, "Blueprint Brain-teasers".
An entry from Ruth Gardner's blog for 18 December 2011 entitled, "Sobering Sunday Stroll".
An entry from Ruth Gardner's blog for 30 October 2011 entitled, "Doing Dishes the English way".
An entry from Ruth Gardner's blog for 17 February 2012 entitled, "Approaching Anniversary".
An entry from Ruth Gardner's blog for 25 January 2013 entitled, "Preservation Project".
None
An entry from Ruth Gardner's blog for 11 June 2012 entitled, "Sobering Sunday Stroll".
An entry from Ruth Gardner's blog for 24 October 2011 entitled, "Don't ask, don't tell".
Nick Rogers, project director, Canterbury Land Assessment for Tonkin & Taylor. Tonkin & Taylor is the environmental and engineering consultancy doing the Canterbury land damage assessment work for EQC and the Canterbury Earthquake Recovery Authority.
None
The "Lyttelton Review" newsletter for 15 August 2011, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 11 March 2013, produced by the Lyttelton Harbour Information Centre.
During the 2010 - 2011 Canterbury earthquake sequence, extensive liquefaction was observed in many areas of Christchurch city and its surroundings, causing widespread damage to buildings and infrastructure. While existing simplified methods were found to work well in some areas of the city, there were also large areas where these methods did not perform satisfactorily. In some of these cases, researchers have proposed that layers of fine grained material within the soil profile may be responsible for preventing the manifestation of liquefaction. This paper presents preliminary findings on the mechanisms at play when pressure differentials exist across a clay layer. It is found that if the clay layer is unable to distort, then pore fluid is unable to break-through the layer even with relatively high pressures, resulting in dissipation of excess pore pressures by seepage. If the layers are however able to distort, then it is possible for the pore fluid to break through the clay layer, potentially resulting in adverse effects in terms of the severity of liquefaction.
The "Lyttelton Harbour Review" newsletter for 6 May 2013, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 20 February 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 30 July 2012, produced by the Lyttelton Harbour Information Centre.
None
The "Lyttelton Harbour Review" newsletter for 29 July 2013, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 26 March 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 19 March 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 17 February 2013, produced by the Lyttelton Harbour Information Centre.
Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.
In the aftermath of the 2010-2011 Canterbury Earthquake Sequence (CES), the location of Christchurch-City on the coast of the Canterbury Region (New Zealand) has proven crucial in determining the types of- and chains of hazards that impact the city. Very rapidly, the land subsidence of up to 1 m (vertical), and the modifications of city’s waterways – bank sliding, longitudinal profile change, sedimentation and erosion, engineered stop-banks… - turned rainfall and high-tides into unprecedented floods, which spread across the eastern side of the city. Within this context, this contribution presents two modeling results of potential floods: (1) results of flood models and (2) the effects of further subsidence-linked flooding – indeed if another similar earthquake was to strike the city, what could be the scenarios of further subsidence and then flooding. The present research uses the pre- and post-CES LiDAR datasets, which have been used as the boundary layer for the modeling. On top of simple bathtub model of inundation, the river flood model was conducted using the 2-D hydrodynamic code NAYS-2D developed at the University of Hokkaido (Japan), using a depth-averaged resolution of the hydrodynamic equations. The results have shown that the area the most at risk of flooding are the recent Holocene sedimentary deposits, and especially the swamplands near the sea and in the proximity of waterways. As the CES drove horizontal and vertical displacement of the land-surface, the surface hydrology of the city has been deeply modified, increasing flood risks. However, it seems that scientists and managers haven’t fully learned from the CES, and no research has been looking at the potential future subsidence in further worsening subsidence-related floods. Consequently, the term “coastal quake”, coined by D. Hart is highly topical, and most especially because most of our modern cities and mega-cities are built on estuarine Holocene sediments.
The "Lyttelton Review" newsletter for 21 November 2011, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 13 May 2013, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 4 March 2013, produced by the Lyttelton Harbour Information Centre.
Overview of the Presentation Jarg: • The seismic context & liquefaction Tom: • Potable Water Supply • Waste Water Network