A Line of Best Fit explores weakness and disconnection in the city. Weakness: There are over 600 earthquake prone buildings in Wellington. The urgency to strengthen buildings risks compromising the aesthetic integrity of the city through abrasive strengthening techniques, or losing a large portion of our built environment to demolition. The need for extensive earthquake strengthening in Wellington, Christchurch and other New Zealand cities provides an exciting opportunity for architecture. Disconnection: In Wellington pedestrian activity is focused around three main routes: Cuba Street, Lambton Quay and Courtney Place. The adjacent areas are often disconnected and lack vibrancy due to large building footprints, no-exit laneways and lack of public spaces. The Design proposes a strategy for earthquake strengthening, preserving and upgrading the built environment, and expanding and connecting the pedestrian realm. The site is two earthquake prone buildings on the block between Marion Street and Taranaki Street in central Wellington. A cut through the centre of the Aspro and Cathie Buildings ties the buildings together to strengthen and create a new arcade as public space. The cut aligns with existing pedestrian routes connecting the block with the city. The Design is divided into three components: Void, Curve, and Pattern and Structure. Void investigates the implications of cutting a portion out the existing buildings and the opportunities this provides for connection, urban interaction, and light. Curve discusses the unusual form of The Design in terms of scale, the human response and the surrounding spaces. Pattern and Structure considers the structural requirements of the project and how a void enveloped in perforated screens can strengthen the earthquake prone buildings. The importance of connection, providing strength in the city, a dialogue between old and new, and engagement with the unexpected are evaluated. Opportunities for further development and research are discussed, with particular reference to how the principles of The Design could be implemented on a larger scale throughout our cities. A Line of Best Fit is an architectural proposal that creates strength and connection.
Sadly the days are numbered after the 6.3 quake that hit Christchurch 22 February 2011! You can see the blue streel strengthening on the tower from the earthquake on 4 September 2010. Also if you look closely you can see the cracks that have determained its fate! Press L.
Efforts are being made to shore up and strengthen this building (corner of Hereford Street / Manchester Street) to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
Efforts are being made to shore up and strengthen this building (corner of Hereford Street / Manchester Street) to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
Steel frames are being used to shore the unstable facade of the St John the Baptist Church at Latimer Square while the building is being repaired and strengthened following the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
An as-built reinforced concrete (RC) frame building designed and constructed according to pre-1970s code design construction practice has been recently tested on the shake table at the University of Canterbury. The specimen, 1/2.5 scaled version of the original prototype, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. Following the benchmark test, a retrofit intervention has been proposed to rehabilitate the tested specimen. In this paper, detailed information on the assessment and design of the seismic retrofit procedure using GFRP (glass fibre reinforced polymer) materials is given for the whole frame. Hierarchy of strength and sequence of events (damage mechanisms) in the panel zone region are evaluated using a moment-axial load (M-N) interaction performance domain, according to a performance-based retrofit philosophy. Specific limit states or design objectives are targeted with attention given to both strength and deformation limits. In addition, an innovative retrofit solution using FRP anchor dowels for the corner beam-column joints with slabs is proposed. Finally, in order to provide a practical tool for engineering practice, the retrofit procedure is provided in a step-by step flowchart fashion.
As a result of the findings and recommendations of the Royal Commission of Inquiry into the Canterbury Earthquake Swarm of 2010-2011 the New Zealand Government has introduced new legislation that will require the mandatory strengthening of all earthquake-prone buildings in New Zealand. An earthquake prone building is currently defined as a building that is less than one third the seismic strength of a new building. If an owner does not wish to strengthen their buildings then they must demolish them. Seismic retrofitting of buildings is a form of property development and as such, the decision to retrofit or not should be based on a robust and soundly conducted feasibility study. Feasibility studies on seismic retrofitting can be particularly challenging for a number of reasons thus making it difficult for owners to make informed and sound decisions relating to their earthquake prone buildings. This paper considers the concept and process of feasibility analysis as applied to earthquake prone buildings and discusses the current challenges posed by such feasibility studies. A number of recommendations are made in an attempt to help develop a best practice model for decision making relating to earthquake prone buildings."
A video about field trials conducted by the Department of Building and Housing at Queen Elizabeth II Park in Christchurch. Fifty kilograms of explosives are being used to simulate a magnitude-4 earthquake at a distance of 10 kilometres. The aim of the trials is to test soil-strengthening techniques that could be used to repair damaged land in Christchurch.
Photograph captioned by Fairfax, "Stephen Mateer (left) and James Gurnsey of the Lyttelton Coffee Company, who are thankful that they recently earthquake-strengthened their busy Lyttelton Cafe - see the steel beams behind them".
Cracks have ripped through external columns of this 7 storey building (corner of Hereford Street / Manchester Street), and efforts are being made to shore up and strengthen it to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
Cracks have ripped through external columns of this 7 storey building (corner of Hereford Street / Manchester Street), and efforts are being made to shore up and strengthen it to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
Cracks have ripped through external columns of this 7 storey building (corner of Hereford Street / Manchester Street), and efforts are being made to shore up and strengthen it to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
A video of a presentation by Hugh Cowan, General Manager of Reinsurance, Research and Education at EQC, at the 2016 Seismics in the City Conference. The presentation is titled, "Working Together Strengthens Understanding".The abstract for the presentation reads, "Hear how EQC led a collaborative research project in Canterbury that involved diverse stakeholders from government, council officials and insurers to homeowners, and why collaboration means that Canterbury's geotechnical data is now helping to inform research locally, nationally and around the world."
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Historic buildings around Christchurch received varying degrees of damage. The Arts Centre at the Worcester/Montreal corner where strengthening has worked".
A man struggles to hold upright a rigid and obstinate man who is shaking like an earthquake. The man pushing says 'That's NOT what we meant by quake strengthening Aaron!' Context: Aaron Gilmore is a councillor, a new councillor, and has been bucking the trend when it comes to voting for the CEO Tony Marryatt who is tied up with CERA, the canterbury earthquake authority, by publicly making his personal views known to the public on radio etc before the voting has been cast. Councillors are meant to present an unbiased facade when it comes to voting. Gilmore was talking to the media and in obvious support of Marryatt....the result being that there was pressure on Gilmore to abstain from voting and stand down from the process. Quantity: 1 digital cartoon(s).
A video about a fire which broke out in an earthquake-damaged building on High Street. The video includes an interview with Steve Kennedy, Canterbury Fire Service Assistant Area Manager, Brigid Fayle, who worked in the building prior to the 22 February 2011 earthquake, and Anne MacKenzie, a structural engineer who worked on strengthening the building.
A photograph of syringes being used to inject epoxy into the cracks of a concrete wall in the Diabetes Centre on Hagley Avenue. The epoxy was injected into the cracks caused by the 4 September 2010 earthquake to strengthen the concrete.
A photograph of syringes being used to inject epoxy into the cracks of a concrete wall in the Diabetes Centre on Hagley Avenue. The epoxy was injected into the cracks caused by the 4 September 2010 earthquake to strengthen the concrete.
Unreinforced masonry (URM) is a construction type that was commonly adopted in New Zealand between the 1880s and 1930s. URM construction is evidently vulnerable to high magnitude earthquakes, with the most recent New Zealand example being the 22 February 2011 Mw6.3 Christchurch earthquake. This earthquake caused significant damage to a majority of URM buildings in the Canterbury area and resulted in 185 fatalities. Many URM buildings still exist in various parts of New Zealand today, and due to their likely poor seismic performance, earthquake assessment and retrofit of the remaining URM building stock is necessary as these buildings have significant architectural heritage and occupy a significant proportion of the nation’s building stock. A collaborative research programme between the University of Auckland and Reid Construction Systems was conducted to investigate an economical yet effective solution for retrofitting New Zealand’s existing URM building stock. This solution adopts the shotcrete technique using an Engineered Cementitious Composite (ECC), which is a polyvinyl alcohol fibre reinforced mortar that exhibits strain hardening characteristics. Collaborations have been formed with a number of consulting structural engineers throughout New Zealand to develop innovative and cost effective retrofit solutions for a number of buildings. Two such case studies are presented in this paper. http://www.concrete2013.com.au/technical-program/
More pressure on interested bidders in the Pike River mine to recover the bodies, from both the government and unions. The government's new plan to strengthen infrastructure after the Canterbury earthquakes, it's already criticised for not going far enough and the AA again attacks petrol companies for not cutting prices, despite falling oil prices.
Labour leader Phil Goff is being 'shored up' and strengthened by reinforced steel beams which represent his 'leadership. He tells ACT leader Rodney Hide who holds a newspaper with a headline reading 'ACT rattled again' that he needs to 'strengthen now before the next shake up!' As an insecure leader he is showing sympathy to Rodney Hide who is even more insecure because of the recent embarrassment of the David Garrett debacle. The title of the cartoon is 'Quake-proofing essential...' which is a reference to the Christchurch earthquake of 4th September and the continuing aftershocks. Quantity: 1 digital cartoon(s).
Photograph captioned by Fairfax, "Work to restore and earthquake-strengthen the badly damaged historic St Paul's Trinity Pacific Presbyterian Church on Cashel Street has begun after resource consents were granted by the Christchurch City Council, and a preferred contractor was selected recently. Site manager Mike McKee inspects the domes to be restored".
Photograph captioned by Fairfax, "Work to restore and earthquake-strengthen the badly damaged historic St Paul's Trinity Pacific Presbyterian Church on Cashel Street has begun after resource consents were granted by the Christchurch City Council, and a preferred contractor was selected recently. Leading hand, Iain Piper (left) and site manager Mike McKee at work on the upstairs seating area".
Photograph captioned by Fairfax, "Work to restore and earthquake-strengthen the badly damaged historic St Paul's Trinity Pacific Presbyterian Church on Cashel Street has begun after resource consents were granted by the Christchurch City Council, and a preferred contractor was selected recently. Leading hand, Iain Piper (left) and site manager Mike McKee at work on the upstairs seating area".
Photograph captioned by Fairfax, "Work to restore and earthquake-strengthen the badly damaged historic St Paul's Trinity Pacific Presbyterian Church on Cashel Street has begun after resource consents were granted by the Christchurch City Council, and a preferred contractor was selected recently. Leading hand, Iain Piper (left) and site manager Mike McKee at work on the upstairs seating area".
Photograph captioned by Fairfax, "Work to restore and earthquake-strengthen the badly damaged historic St Paul's Trinity Pacific Presbyterian Church on Cashel Street has begun after resource consents were granted by the Christchurch City Council, and a preferred contractor was selected recently. Site manager Mike McKee (left) and leading hand, Iain Piper, look over the work to be done in the towers".
The Canterbury earthquakes of 2010 and 2011 have shone the spotlight on a number of tax issues. These issues, and in particular lessons learned from them, will be relevant for revenue authorities, policymakers and taxpayers alike in the broader context of natural disasters. Issues considered by this paper include the tax treatment of insurance monies. For example, building owners will receive pay-outs for destroyed assets and buildings which have been depreciated. Where the insurance payment is more than the adjusted tax value, there will be a taxable "gain on sale" (or depreciation recovery income). If the building owner uses those insurance proceeds to purchase a replacement asset, legislative amendments specifically enacted following the earthquakes provide that rollover relief of the depreciation recovery income is available. The tax treatment of expenditure to seismically strengthen a building is another significant issue faced by building owners. Case law has determined that this expenditure will usually be capital expenditure. In the past such costs could be capitalised to the building and depreciated accordingly. However, since the 2011-2012 income year owners have been prohibited from claiming depreciation on buildings and therefore currently no deduction is available for such strengthening expenditure (whether immediate or deferred). This has significant potential implications for landlords throughout New Zealand facing significant seismic retrofit costs. Incentives, or some form of financial support, whether delivered through the tax system or some other mechanism may be required. International Financial Reporting Standards (IFRS) require insurance proceeds, including reimbursement for expenditure of a capital nature, be reported as income while expenditure itself is not recorded as a current period expense. This has the effect of overstating current income and creating a larger variation between reported income for accounting and taxation purposes. Businesses have obligations to maintain certain business records for tax purposes. Reconstructing records destroyed by a natural disaster depends on how the information was originally stored. The earthquakes have demonstrated the benefits of ‘off-site’ (outside Canterbury) storage, in particular electronic storage. This paper considers these issues and the Inland Revenue Department (Inland Revenue) Standard Practice Statement which deals with inter alia retention of business records in electronic format and offshore record storage. Employer provided accommodation is treated as income to the benefitting employee. A recent amendment to the Income Tax Act 2007 retrospectively provides that certain employer provided accommodation is exempt from tax. The time aspect of these rules is extended where the employee is involved in the Canterbury rebuild and comes from outside the region.
As a result of the Christchurch Earthquake that occurred on 22nd February 2011 and the resultant loss of life and widespread damage, a Royal Commission of Enquiry was convened in April 2011. The Royal Commission recommended a number of significant changes to the regulation of earthquake prone building in New Zealand. Earthquake prone buildings are buildings that are deemed to be of insufficient strength to perform adequately in a moderate earthquake. In response to the Royal Commission recommendations the New Zealand Government carried out a consultative process before announcing proposed changes to the building regulations in August 2013. One of the most significant changes is the imposition of mandatory strengthening requirements for earthquake prone buildings on a national basis. This will have a significant impact on the urban fabric of most New Zealand towns and cities. The type of traditional cost benefit study carried out to date fails to measure these impacts and this paper proposes an alternative methodology based on the analysis of land use data and rating valuations. This methodology was developed and applied to a small provincial town in the form of a case study. The results of this case study and the methodology used are discussed in this paper.
A video of the second part of an address by Dr. Rod Carr, Vice Chancellor of the University of Canterbury, at the 2012 Seismics and the City forum. Dr. Carr talks about how the University coped with the immediate disruption caused by the February earthquake, and turned a crisis into an opportunity by strengthening its learning and innovation roles in seismic-related areas and other domains.
A video of the first part of an address by Dr. Rod Carr, Vice Chancellor of the University of Canterbury, at the 2012 Seismics and the City forum. Dr. Carr talks about how the University coped with the immediate disruption caused by the February earthquake, and turned a crisis into an opportunity by strengthening its learning and innovation roles in seismic-related areas and other domains.