Search

found 37 results

Images, eqnz.chch.2010

One Month after the Christchurch Earthquake. The mangled remains of the pedestrian bridge over the river Avon Twitter | Facebook | My ...

Images, eqnz.chch.2010

One Month after the Christchurch Earthquake. The remains of a Church in St albans, Edgeware Rd Twitter | Facebook | My Website | <...

Images, Alexander Turnbull Library

The Queen tells Prince Philip that she has received a 'Dear John' letter from PM John Key and that it 'seems the earth has moved for him back in NZ'. Text above reads 'Keynote'. In a second version the queen says that John Key 'preferred to stay at home 'cos the earth moved'. A third version refers to the decision of the PM to remain in New Zealand because of the Christchurch earthquake instead of going on a trip to Europe with his wife during which they were to have stayed at the invitation of the Queen at Balmoral Castle in Scotland. Quantity: 3 digital cartoon(s).

Images, eqnz.chch.2010

One Month after the Christchurch Earthquake. This is in Kaiapoi at the north end of Christchurch. A view down the walkway next to the river Twitter | Facebook |

Images, eqnz.chch.2010

This is the pedestrian bridge in Kaiapoi close to Christchurch. Not the best angle but the whole bridge on the right hand side is twisted and looks like some kind of rollercoaster. Taken one month after the Quake Twitter |

Images, eqnz.chch.2010

There are quite a few signs like this around Christchurch after the Quake. This is one of them. Off shot to the right is a leveled patch of ground where the owners furniture restoration shop used to be. Twitter |

Research papers, University of Canterbury Library

This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.