When disasters and crises, both man-made and natural, occur, resilient higher education institutions adapt in order to continue teaching and research. This may necessitate the closure of the whole institution, a building and/or other essential infrastructure. In disasters of large scale the impact can be felt for many years. There is an increasing recognition of the need for disaster planning to restructure educational institutions so that they become more resilient to challenges including natural disasters (Seville, Hawker, & Lyttle, 2012).The University of Canterbury (UC) was affected by seismic events that resulted in the closure of the University in September 2010 for 10 days and two weeks at the start of the 2011 academic year This case study research describes ways in which e-learning was deployed and developed by the University to continue and even to improve learning and teaching in the aftermath of a series of earthquakes in 2010 and 2011. A qualitative intrinsic embedded/nested single case study design was chosen for the study. The population was the management, support staff and educators at the University of Canterbury. Participants were recruited with purposive sampling using a snowball strategy where the early key participants were encouraged to recommend further participants. Four sources of data were identified: (1) documents such as policy, reports and guidelines; (2) emails from leaders of the colleges and academics; (3) communications from senior management team posted on the university website during and after the seismic activity of 2010 and 2011; and (4) semi-structured interviews of academics, support staff and members of senior management team. A series of inductive descriptive content analyses identified a number of themes in the data. The Technology Acceptance Model 2 (Venkatesh & Davis, 2000) and the Indicator of Resilience Model (Resilient Organisations, 2012) were used for additional analyses of each of the three cases. Within the University case, the cases of two contrasting Colleges were embedded to produce a total of three case studies describing e-learning from 2000 - 2014. One contrast was the extent of e-learning deployment at the colleges: The College of Education was a leader in the field, while the College of Business and Law had relatively little e-learning at the time of the first earthquake in September 2010. The following six themes emerged from the analyses: Communication about crises, IT infrastructure, Availability of e-learning technologies, Support in the use of e-learning technologies, Timing of crises in academic year and Strategic planning for e-learning. One of the findings confirmed earlier research that communication to members of an organisation and the general public about crises and the recovery from crises is important. The use of communication channels, which students were familiar with and already using, aided the dissemination of the information that UC would be using e-learning as one of the options to complete the academic year. It was also found that e-learning tools were invaluable during the crises and facilitated teaching and learning whilst freeing limited campus space for essential activities and that IT infrastructure was essential to e-learning. The range of e-learning tools and their deployment evolved over the years influenced by repeated crises and facilitated by the availability of centrally located support from the e-Learning support team for a limited set of tools, as well as more localised support and collaboration with colleagues. Furthermore, the reasons and/or rate of e-learning adoption in an educational institution during crises varied with the time of the academic year and the needs of the institution at the time. The duration of the crises also affected the adoption of e-learning. Finally, UC’s lack of an explicit e-learning strategy influenced the two colleges to develop college-specific e-learning plans and those College plans complemented the incorporation of e-learning for the first time in the University’s teaching and learning strategy in 2013. Twelve out of the 13 indicators of the Indicators of Resilience Model were found in the data collected for the study and could be explained using the model; it revealed that UC has become more resilient with e-learning in the aftermath of the seismic activities in 2010 and 2011. The interpretation of the results using TAM2 demonstrated that the adoption of technologies during crises aided in overcoming barriers to learning at the time of the crisis. The recommendations from this study are that in times of crises, educational institutions take advantage of Cloud computing to communicate with members of the institution and stakeholders. Also, that the architecture of a university’s IT infrastructure be made more resilient by increasing redundancy, backup and security, centralisation and Cloud computing. In addition, when under stress it is recommended that new tools are only introduced when they are essential.
Following the 2010-2011 earthquakes in Canterbury, New Zealand, the University of Canterbury (UC) was faced with the need to respond to major challenges in its teaching and learning environment. With the recognition of education as a key component to the recovery of the Canterbury region, UC developed a plan for the transformation and renewal of the campus. Central to this renewal is human capital – graduates who are distinctly resilient and broadly skilled, owing in part to their living and rebuilding through a disaster. Six desired graduate attributes have been articulated through this process: knowledge and skills of a recognized subject, critical thinking skills, the ability to interpret information from a range of sources, the ability to self-direct learning, cultural competence, and the recognition of global connections through social, ethical, and environmental values. All of these attributes may readily be identified in undergraduate geoscience field education and graduate field-based studies, and this is particularly important to highlight in a climate where the logistical and financial requirements of fieldwork are becoming a barrier to its inclusion in undergraduate curricula. Fieldwork develops discipline-specific knowledge and skills and fosters independent and critical thought. It encourages students to recognize and elaborate upon relevant information, plan ways to solve complicated problems, execute and re-evaluate these plans. These decisions are largely made by the learners, who often direct their own field experience. The latter two key graduate attributes, cultural competence and global recognition of socio-environmental values, have been explicitly addressed in field education elsewhere and there is potential to do so within the New Zealand context. These concepts are inherent to the sense of place of geoscience undergraduates and are particularly important when the field experience is viewed through the lens of landscape heritage. This work highlights the need to understand how geoscience students interact with field places, with unique implications for their cultural and socio-environmental awareness as global citizens, as well as the influence that field pedagogy has on these factors.
The Canterbury earthquakes of 2010 and 2011 caused significant damage and disruption to the city of Christchurch, New Zealand. A Royal Commission was established to report on the causes of building failure as a result of the earthquakes as well as look at the legal and best-practice requirements for buildings in New Zealand Central Business Districts. The Royal Commission made 189 recommendations on a variety of matters including managing damaged buildings after an earthquake, the adequacy of building codes and standards, and the processes of seismic assessments of existing buildings to determine their earthquake vulnerability. In response the Ministry of Business, Innovation and Employment, the agency responsible for administering building regulation in New Zealand, established a work programme to assist with the Canterbury rebuild and to implement the lessons learned throughout New Zealand. The five primary work streams in the programme are: • Facilitating the Canterbury Rebuild • Structural Performance and Design Standards • Geotechnical and structural guidance • Existing Building Resilience • Post Disaster Building Management This paper provides more detail on each of the work streams. There has been significant collaboration between the New Zealand Government and the research community, technical societies, and engineering consultants, both within New Zealand and internationally, to deliver the programme and improve the resilience of the New Zealand built environment. This has presented major challenges for an extremely busy industry in the aftermath of the Canterbury earthquakes. The paper identifies the items of work that have been completed and the work that is still in progress at the time of writing.
Local independent radio stations in Christchurch, New Zealand, had their operations severely disrupted by major earthquakes in September 2010 and February 2011. This article examines the experiences of three radio stations that were shut out of their central city premises by the cordon drawn around the city after the 22 February quake. One of the stations continued broadcasting automatically, while the others were unable to fully get back on air for several weeks afterwards. All of the stations had to manage access to workspaces, the emotional needs of staff and volunteers, the technical ability to broadcast, and the need to adapt content appropriately when back on air. For the locally based radio managers decisions had to be made about the future of the stations in a time of significant emotional, physical, and geological upheaval. The article explores how these radio stations were disrupted by the earthquake, and how they returned to air through new combinations and interconnections of people, workspace, technology, content and transmission.
Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript
Territorial authorities in New Zealand are responding to regulatory and market forces in the wake of the 2011 Christchurch earthquake to assess and retrofit buildings determined to be particularly vulnerable to earthquakes. Pending legislation may shorten the permissible timeframes on such seismic improvement programmes, but Auckland Council’s Property Department is already engaging in a proactive effort to assess its portfolio of approximately 3500 buildings, prioritise these assets for retrofit, and forecast construction costs for improvements. Within the programme structure, the following varied and often competing factors must be accommodated: * The council’s legal, fiscal, and ethical obligations to the people of Auckland per building regulations, health and safety protocols, and economic growth and urban development planning strategies; * The council’s functional priorities for service delivery; * Varied and numerous stakeholders across the largest territorial region in New Zealand in both population and landmass; * Heritage preservation and community and cultural values; and * Auckland’s prominent economic role in New Zealand’s economy which requires Auckland’s continued economic production post-disaster. Identifying those buildings most at risk to an earthquake in such a large and varied portfolio has warranted a rapid field assessment programme supplemented by strategically chosen detailed assessments. Furthermore, Auckland Council will benefit greatly in time and resources by choosing retrofit solutions, techniques, and technologies applicable to a large number of buildings with similar configurations and materials. From a research perspective, the number and variety of buildings within the council’s property portfolio will provide valuable data for risk modellers on building typologies in Auckland, which are expected to be fairly representative of the New Zealand building stock as a whole.
A Transitional Imaginary: Space, Network and Memory in Christchurch is the outcome and the record of a particular event: the coming together of eight artists and writers in Ōtautahi Christchurch in November 2015, with the ambitious aim to write a book collaboratively over five days. The collaborative process followed the generative ‘book sprint’ method founded by our facilitator for the event, Adam Hyde, who has long been immersed in digital practices in Aotearoa. A book sprint prioritises the collective voice of the participants and reflects the ideas and understandings that are produced at the time in which the book was written, in a plurality of perspectives. Over one hundred books have been completed using the sprint methodology, covering subjects from software documentation to reflections on collaboration and fiction. We chose to approach writing about Ōtautahi Christchurch through this collaborative process in order to reflect the complexity of the post-quake city and the multiple paths to understanding it. The city has itself been a space of intensive collaboration in the post-disaster period. A Transitional Imaginary is a raw and immediate record, as much felt expression as argued thesis. In many ways the process of writing had the character of endurance performance art. The process worked by honouring the different backgrounds of the participants, allowing that dialogue and intensity could be generative of different forms of text, creating a knowledge that eschews a position of authority, working instead to activate whatever anecdotes, opinions, resources and experiences are brought into discussion. This method enables a dynamic of voices that merge here, separate there and interrupt elsewhere again. As in the contested process of rebuilding and reimagining Christchurch itself, the dissonance and counterpoint of writing reflects the form of conversation itself. This book incorporates conflict, agreement and the activation of new ideas through cross-fertilisation to produce a new reading of the city and its transition. The transitional has been given a specific meaning in Christchurch. It is a product of local theorising that encompasses the need for new modes of action in a city that has been substantially demolished (Bennett & Parker, 2012). Transitional projects, such as those created by Gap Filler, take advantage of the physical and social spaces created by the earthquake through activating these as propositions for new ways of being in the city. The transitional is in motion, looking towards the future. A Transitional Imaginary explores the transitional as a way of thinking and how we understand the city through art practices, including the digital and in writing.
Questions to Ministers
1. PESETA SAM LOTU-IIGA to the Minister of Finance: What progress has the Government made in building a more competitive economy and getting on top of New Zealand's longstanding reliance on foreign debt?
2. Hon PHIL GOFF to the Prime Minister: Does he have confidence in his Minister of Finance?
3. KEVIN HAGUE to the Prime Minister: Does he stand by all his statements regarding the safety of mining in New Zealand; and does he consider his Government has met all its responsibilities arising out of the Pike River mine disaster?
4. Hon DAVID CUNLIFFE to the Minister of Finance: What are the latest official forecasts for the current account balance and the net international investment position over the next four years under his Government's policies?
5. JONATHAN YOUNG to the Minister of Justice: What progress has been made on the development of alternative court processes for child witnesses?
6. Hon CLAYTON COSGROVE to the Minister of Finance: In light of his statement yesterday regarding foreign-owned assets that "we need to generate the kind of savings that will help New Zealand buy back those assets", is it still the Government's policy to sell State assets if it is re-elected, given that up to 30 percent of the shares he proposes selling could go to overseas buyers?
7. Hon JOHN BOSCAWEN to the Minister of Finance: Does he think that implementing the 2025 Taskforce's recommendations in November 2009 would have avoided New Zealand's double credit downgrade; if not, why not?
8. GRANT ROBERTSON to the Minister of Health: Has he been advised of a reduction in funding for home-based health support services in the Wellington region?
9. TIM MACINDOE to the Minister of Corrections: Has she received any progress reports on the implementation of the Government's Prisoner Skills and Employment Strategy?
10. STUART NASH to the Minister of Finance: By how many percent has the GDP per capita gap between Australia and New Zealand widened since his Government took office?
11. NIKKI KAYE to the Minister for Communications and Information Technology: How many schools will benefit from ultra-fast broadband in the first year of the roll-out?
12. BRENDON BURNS to the Minister for Canterbury Earthquake Recovery: Does he stand by all of his statements on Canterbury's earthquake recovery?
Questions to Members
1. SU'A WILLIAM SIO to the Chairperson of the Social Services Committee: Will she call a meeting to consider the Inquiry into the identification, rehabilitation, and care and protection of child offenders; if not, why not?
Questions to Ministers and lt;br / and gt; and lt;br / and gt; 1. Hon ANNETTE KING to the Prime Minister: Is he satisfied that all systems set up pursuant to commitments he has given to assist residents following the Christchurch earthquake are appropriate and working? and lt;br / and gt; and lt;br / and gt; 2. DAVID BENNETT to the Minister of Finance: What do this morning's Reserve Bank economic forecasts show? and lt;br / and gt; and lt;br / and gt; 3. Hon DAVID CUNLIFFE to the Minister of Finance: By what amount has the Reserve Bank lowered the official cash rate today, and what reason has the Bank given for this action? and lt;br / and gt; and lt;br / and gt; 4. GARETH HUGHES to the Minister of Finance: What will be the impact of the recent fuel price rise on the New Zealand economy, including impacts on GDP, consumer spending and the current account? and lt;br / and gt; and lt;br / and gt; 5. Hon DAVID PARKER to the Acting Minister for Economic Development: Has he been advised by the Prime Minister whether his appointment as Acting Minister for Economic Development is temporary or expected to carry on to the election? and lt;br / and gt; and lt;br / and gt; 6. KATRINA SHANKS to the Minister of Transport: What action is the Government taking to improve Wellington's train network? and lt;br / and gt; and lt;br / and gt; 7. Hon DAMIEN O'CONNOR to the Prime Minister: Can he assure the families of those killed in the Pike River Mine disaster that Government funding will be available for the recovery of bodies, given the mine is now in receiver's hands. and lt;br / and gt; and lt;br / and gt; 8. COLIN KING to the Minister of Civil Defence: Is the Government satisfied with the provision of replacement toilets for earthquake-affected Christchurch residents? and lt;br / and gt; and lt;br / and gt; 9. CAROL BEAUMONT to the Minister of Women's Affairs: Can she outline a significant improvement for women initiated by the current Government? and lt;br / and gt; and lt;br / and gt; 10. ALLAN PEACHEY to the Minister of Education: What provisions have been made to ensure continuity of early childhood education and schooling in the Christchurch region since the 22 February earthquake? and lt;br / and gt; and lt;br / and gt; 11. Hon TREVOR MALLARD to the Minister for Communications and Information Technology: What advice did he receive on any perceived conflict of interest before he took part in the Cabinet decision that led to the deferral of the requirement for MediaWorks to pay its frequency licence to the Crown? and lt;br / and gt; and lt;br / and gt; 12. KANWALJIT SINGH BAKSHI to the Minister of Internal Affairs: What reports has he received on the progress of urban search and rescue and firefighter teams working in Christchurch following the 22 February earthquake?
The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.
The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.