Search

found 39 results

Images, UC QuakeStudies

The deconstruction of the Crowne Plaza Hotel, with a digger and a pile of demolition rubble in front. Road cones and signs have been placed in front to divert traffic around the area. Flags in Canterbury colours, red and black can be seen on the street lights.

Images, UC QuakeStudies

Corrogated roofing from the demolition of the QEII complex. The photographer comments, "This collection of galvanised roofing looks so photogenic as I walked around the partly demolished Queen Elizabeth stadium and swimming pool".

Images, UC QuakeStudies

The deconstruction of the Crowne Plaza Hotel, with a digger and a pile of demolition rubble in front. Road cones and signs have been placed in front to divert traffic around the area. A flag in Canterbury colours, red and black can be seen on the street lights.

Images, UC QuakeStudies

A digitally manipulated image of the high diving boards at QEII swimming pool. Rubble has fallen on the boards during the demolition of the complex. The photographer comments, "The diving board at the QEII stadium swimming pool during its demolition after being damaged in the Christchurch earthquake in February 2011".

Images, UC QuakeStudies

A digitally manipulated photograph of twisted reinforcing rods amongst the rubble from the demolition of QEII. The photographer comments, "These rarely seen worms live in the pressurised earth under the foundations of buildings. They need a damp soil and be under at least 100 pounds of pressure per square inch. After the destructive force of an earthquake they swiftly rise to the surface through gaps in the rubble. Unfortunately they quickly die and then crystallise as hard as iron in the dry low pressure air".

Images, UC QuakeStudies

A digitally manipulated image of the high diving boards at QEII swimming pool. Rubble has fallen on the boards during the demolition of the complex. A sign reads "Poseidon Extreme". The photographer comments, "I do not know what Poseidon Extreme at this swimming pool looked like before the earthquake damaged it, but it looks really radical now during it's demolition. A strange coincidence is that Poseidon is referred to as 'Earth-Shaker' due to his role in causing earthquakes. So the demolition of this pool due to the series of quakes in Christchurch all seems to be foretold by the gods and that sign".

Images, UC QuakeStudies

A building on St Asaph Street has been demolished, exposing the interior structure of the adjoining building. The photographer comments, "The building that this one was part of has been demolished and the join looks very much like the exterior walls of an Anglo-Saxon house. It has been exposed due to the demolition of damaged buildings after the Christchurch earthquake".

Research papers, University of Canterbury Library

This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.

Research papers, University of Canterbury Library

Deconstruction, at the end of the useful life of a building, produces a considerable amount of materials which must be disposed of, or be recycled / reused. At present, in New Zealand, most timber construction and demolition (C&D) material, particularly treated timber, is simply waste and is placed in landfills. For both technical and economic reasons (and despite the increasing cost of landfills), this position is unlikely to change in the next 10 – 15 years unless legislation dictates otherwise. Careful deconstruction, as opposed to demolition, can provide some timber materials which can be immediately re-used (eg. doors and windows), or further processed into other components (eg. beams or walls) or recycled (‘cascaded’) into other timber or composite products (e.g. fibre-board). This reusing / recycling of materials is being driven slowly in NZ by legislation, the ‘greening’ of the construction industry and public pressure. However, the recovery of useful material can be expensive and uneconomic (as opposed to land-filling). In NZ, there are few facilities which are able to sort and separate timber materials from other waste, although the soon-to-be commissioned Burwood Resource Recovery Park in Christchurch will attempt to deal with significant quantities of demolition waste from the recent earthquakes. The success (or otherwise) of this operation should provide good information as to how future C&D waste will be managed in NZ. In NZ, there are only a few, small scale facilities which are able to burn waste wood for energy recovery (e.g. timber mills), and none are known to be able to handle large quantities of treated timber. Such facilities, with constantly improving technology, are being commissioned in Europe (often with Government subsidies) and this indicates that similar bio-energy (co)generation will be established in NZ in the future. However, at present, the NZ Government provides little assistance to the bio-energy industry and the emergence worldwide of shale-gas reserves is likely to push the economic viability of bio-energy further into the future. The behaviour of timber materials placed in landfills is complex and poorly understood. Degrading timber in landfills has the potential to generate methane, a potent greenhouse gas, which can escape to the atmosphere and cancel out the significant benefits of carbon sequestration during tree growth. Improving security of landfills and more effective and efficient collection and utilisation of methane from landfills in NZ will significantly reduce the potential for leakage of methane to the atmosphere, acting as an offset to the continuing use of underground fossil fuels. Life cycle assessment (LCA), an increasingly important methodology for quantifying the environmental impacts of building materials (particularly energy, and global warming potential (GWP)), will soon be incorporated into the NZ Green Building Council Greenstar rating tools. Such LCA studies must provide a level playing field for all building materials and consider the whole life cycle. Whilst the end-of-life treatment of timber by LCA may establish a present-day base scenario, any analysis must also present a realistic end-of-life scenario for the future deconstruction of any 6 new building, as any building built today will be deconstructed many years in the future, when very different technologies will be available to deal with construction waste. At present, LCA practitioners in NZ and Australia place much value on a single research document on the degradation of timber in landfills (Ximenes et al., 2008). This leads to an end-of-life base scenario for timber which many in the industry consider to be an overestimation of the potential negative effects of methane generation. In Europe, the base scenario for wood disposal is cascading timber products and then burning for energy recovery, which normally significantly reduces any negative effects of the end-of-life for timber. LCA studies in NZ should always provide a sensitivity analysis for the end-of-life of timber and strongly and confidently argue that alternative future scenarios are realistic disposal options for buildings deconstructed in the future. Data-sets for environmental impacts (such as GWP) of building materials in NZ are limited and based on few research studies. The compilation of comprehensive data-sets with country-specific information for all building materials is considered a priority, preferably accounting for end-of-life options. The NZ timber industry should continue to ‘champion’ the environmental credentials of timber, over and above those of the other major building materials (concrete and steel). End-of-life should not be considered the ‘Achilles heel’ of the timber story.