Search

found 93 results

Audio, Radio New Zealand

When Christchurch couple Maree Mockford and Bruce Vincent's home was badly damaged by the February earthquake they shifted into a caravan on their property. Six months later they're still roughing it, using a chemical toilet and showering off site.

Articles, UC QuakeStudies

A photograph captioned, "So it's been an eventful couple of years. I think the first earthquake, it was just so totally unexpected. You went to bed one night and when you woke up - in just a few seconds- everything was different than it had been before".

Research papers, University of Canterbury Library

The lateral capacity of a conventional CLT shear wall is often governed by the strength and stiffness of its connections, which do not significantly utilize the in-plane strength of the CLT. Therefore, CLT shear walls are not yet being used efficiently in the construction of mass timber buildings due to a lack of research on high-capacity connections and alternative wall configurations. In this study, cyclic experiments were completed on six full-scale, 5-ply cantilever CLT shear walls with high-capacity hold-downs using mixed angle screws and bolts. All specimens exhibited significantly higher strength and stiffness than previously tested conventional CLT shear walls in the literature. The base connections demonstrated ductile failure modes through yielding of the hold-down connections. Based on the experimental results, numerical models were calibrated to investigate the seismic behaviour of CLT shear walls for prototype buildings of 3 and 6-storeys in Christchurch, NZ. As an alternative to cantilever (single) shear walls, a type of coupled wall with steel link beams between adjacent CLT wall piers was investigated. Effective coupling requires the link beam-to-wall connections to have adequate strength to ensure ductile link beam responses and adequate stiffness to yield the link beams at a relatively low inter-storey drift level. To this end, three beam-to-wall connection types were developed and cyclically tested to investigate their behaviour and feasibility. Based on the test results of the critical connection, a 3-storey, 2/3-scale coupled CLT wall specimen with three steel link beams and mixed angle screwed hold-downs was cyclically tested to evaluate its performance and experimentally validate the system concept. The test results showed a relatively high lateral strength compared to conventional CLT shear walls, as well as a high system ductility ratio of 7.6. Failure of the system was characterised by combined bending and withdrawal of the screws in the mixed angle screw hold-downs, yielding and eventual inelastic buckling of the steel link beams, CLT toe crushing, and local CLT delamination. Following the initial test, the steel link beams, mixed angle screw hold-downs, and damaged CLT regions were repaired, then the wall specimen was re-tested. The repaired wall behaved similarly to the original test and exhibited slightly higher energy dissipation and peak strength, but marginally more rapid strength deterioration under cyclic loading. Several hybrid coupled CLT shear walls were numerically modelled and calibrated based on the results of the coupled wall experiments. Pushover analyses were conducted on a series of configurations to validate a capacity design method for the system and to investigate reasonable parameter values for use in the preliminary design of the system. Additionally, an iterative seismic design method was proposed and used to design sample buildings of 6, 8, and 10-storeys using both nonlinear pushover and nonlinear time history analyses to verify the prototype designs. Results of the sample building analyses demonstrated adequate seismic behaviour and the proposed design parameters were found to be appropriate. In summary, high-capacity CLT shear walls can be used for the resistance of earthquakes by using stronger base connections and coupled wall configurations. The large-scale experimental testing in this study has demonstrated that both cantilever and coupled CLT shear walls are feasible LLRSs which can provide significantly greater lateral strength, stiffness, and energy dissipation than conventional CLT shear wall configurations.

Images, eqnz.chch.2010

20160415_0044_1D3-38 The Wobbly Jetty - 2 The South New Brighton jetty was rebuilt a couple of years before the earthquakes wrecked it. Was closed to the public for about four years but is open now. #7222

Audio, Radio New Zealand

A villa built on the Sumner Esplanade in Christchurch early last century has been saved from demolition and given a new lease of life. A Queenstown couple couldn't bear to see the beautiful home demolished after the earthquakes, so they bought it, had it cut into two pieces and trucked the 500-kilometres south to the Gibbston Valley near Queenstown.

Audio, Radio New Zealand

A couple of Christchurch men are collecting letterboxes from the city's red-zoned suburbs, to create sculptures to tell the stories of the homes which have been demolished since the February 2011 earthquake. One of the men is Evan Smith - who co-chairs a group called the Avon-Otakaro Network. It's working toward creating a riverside park along the Avon, where the houses once stood.

Images, Alexander Turnbull Library

A couple sits in a Travel Agency discussing places to go for a holiday. The travel agent says 'Worried about holidaying in New Zealand - well how about...' and she turns to the display of countries to visit on the wall behind her. Each of the countries is illustrated with a very negative image; e.g. 'Japan' with a nuclear symbol, 'Thailand' with a pile of human ashes, 'Sth Africa' with two arms raised in desperate supplication... Context - The couple do not want to visit New Zealand because of the Canterbury earthquakes and there seem to be an awful lot of natural disasters or wars or high expense etc. recently. Colour and black and white versions available Quantity: 2 digital cartoon(s).