Search

found 46 results

Research papers, The University of Auckland Library

This thesis describes the strategies for earthquake strengthening vintage clay bricks unreinforced masonry (URM) buildings. URM buildings are well known to be vulnerable to damage from earthquake-induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent destructive natural disaster that resulted in the deaths of 185 people. The earthquake events had drawn people’s attention when URM failure and collapse caused about 39 of the fatality. Despite the poor performance of URM buildings during the 2010/2011 Canterbury earthquakes, a number of successful case study buildings were identified and their details research in-depth. In order to discover the successful seismic retrofitting techniques, two case studies of retrofitted historical buildings located in Christchurch, New Zealand i.e. Orion’s URM substations and an iconic Heritage Hotel (aka Old Government Building) was conducted by investigating and evaluating the earthquake performance of the seismic retrofitting technique applied on the buildings prior to the 2010/2011 Canterbury earthquakes and their performance after the earthquakes sequence. The second part of the research reported in this thesis was directed with the primary aim of developing a cost-effective seismic retrofitting technique with minimal interference to the vintage clay-bricks URM buildings. Two retrofitting techniques, (i) near-surface mounted steel wire rope (NSM-SWR) with further investigation on URM wallettes to get deeper understanding the URM in-plane behaviour, and (ii) FRP anchor are reported in this research thesis.

Images, UC QuakeStudies

A photograph submitted by Matt Pickering to the QuakeStories website. The description reads, "The army on hand, helping prepare for the demolition of the Strategy Building".

Research papers, The University of Auckland Library

The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.

Research papers, The University of Auckland Library

The 2010–2011 Canterbury earthquakes, which involved widespread damage during the February 2011 event and ongoing aftershocks near the Christchurch Central Business District, left this community with more than $NZD 40 billion in losses (~20 % GDP), demolition of approximately 60 % of multi-storey concrete buildings (3 storeys and up), and closure of the core business district for over 2 years. The aftermath of the earthquake sequence has revealed unique issues and complexities for the owners of commercial and multi-storey residential buildings in relation to unexpected technical, legal, and financial challenges when making decisions regarding the future of their buildings impacted by the earthquakes. The paper presents a framework to understand the factors influencing post-earthquake decisions (repair or demolish) on multi-storey concrete buildings in Christchurch. The study, conducted in 2014, includes in-depth investigations on 15 case-study buildings using 27 semi-structured interviews with various property owners, property managers, insurers, engineers, and government authorities in New Zealand. The interviews revealed insights regarding the multitude of factors influencing post-earthquake decisions and losses. As expected, the level of damage and repairability (cost to repair) generally dictated the course of action. There is strong evidence, however, that other variables have significantly influenced the decision on a number of buildings, such as insurance, business strategies, perception of risks, building regulations (and compliance costs), and government decisions. The decision-making process for each building is complex and unique, not solely driven by structural damage. Furthermore, the findings have put the spotlight on insurance policy wordings and the paradoxical effect of insurance on the recovery of Christchurch, leading to other challenges and issues going forward.

Research papers, The University of Auckland Library

Territorial authorities in New Zealand are responding to regulatory and market forces in the wake of the 2011 Christchurch earthquake to assess and retrofit buildings determined to be particularly vulnerable to earthquakes. Pending legislation may shorten the permissible timeframes on such seismic improvement programmes, but Auckland Council’s Property Department is already engaging in a proactive effort to assess its portfolio of approximately 3500 buildings, prioritise these assets for retrofit, and forecast construction costs for improvements. Within the programme structure, the following varied and often competing factors must be accommodated: * The council’s legal, fiscal, and ethical obligations to the people of Auckland per building regulations, health and safety protocols, and economic growth and urban development planning strategies; * The council’s functional priorities for service delivery; * Varied and numerous stakeholders across the largest territorial region in New Zealand in both population and landmass; * Heritage preservation and community and cultural values; and * Auckland’s prominent economic role in New Zealand’s economy which requires Auckland’s continued economic production post-disaster. Identifying those buildings most at risk to an earthquake in such a large and varied portfolio has warranted a rapid field assessment programme supplemented by strategically chosen detailed assessments. Furthermore, Auckland Council will benefit greatly in time and resources by choosing retrofit solutions, techniques, and technologies applicable to a large number of buildings with similar configurations and materials. From a research perspective, the number and variety of buildings within the council’s property portfolio will provide valuable data for risk modellers on building typologies in Auckland, which are expected to be fairly representative of the New Zealand building stock as a whole.

Research papers, The University of Auckland Library

The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.

Research Papers, Lincoln University

The urban environment influences the way people live and shape their everyday lives, and microclimate sensitive design can enhance the use of urban streets and public spaces. Innovative approaches to urban microclimate design will become more important as the world’s population becomes ever more urban, and climate change generates more variability and extremes in urban microclimatic conditions. However, established methods of investigation based upon conventions drawn from building services research and framed by physiological concepts of thermal comfort may fail to capture the social dynamics of urban activity and their interrelationship with microclimate. This research investigates the relationship between microclimate and urban culture in Christchurch, New Zealand, based upon the concept of urban comfort. Urban comfort is defined as the socio-cultural (therefore collective) adaptation to microclimate due to satisfaction with the urban environment. It involves consideration of a combination of human thermal comfort requirements and adaptive comfort circumstances, preferences and strategies. A main methodological challenge was to investigate urban comfort in a city undergoing rapid physical change following a series of major earthquakes (2010-2011), and that also has a strongly seasonal climate which accentuates microclimatic variability. The field investigation had to be suitable for rapidly changing settings as buildings were demolished and rebuilt, and be able to capture data relevant to a cycle of seasons. These local circumstances meant that Christchurch was valuable as an example of a city facing rapid and unpredictable change. An interpretive, integrative, and adaptive research strategy that combined qualitative social science methods with biophysical measures was adopted. The results are based upon participant observation, 86 in-depth interviews with Christchurch residents, and microclimate data measurements. The interviews were carried out in a variety of urban settings including established urban settings (places sustaining relatively little damage) and emerging urban settings (those requiring rebuilding) during 2011-2013. Results of this research show that urban comfort depends on adaptive strategies which in turn depend on culture. Adaptive strategies identified through the data analysis show a strong connection between natural and built landscapes, combined with the regional outdoor culture, the Garden City identity and the connections between rural and urban landscapes. The results also highlight that thermal comfort is an important but insufficient indicator of good microclimate design, as social and cultural values are important influences on climate experience and adaptation. Interpretive research is needed to fully understand urban comfort and to provide urban microclimate design solutions to enhance the use of public open spaces in cities undergoing change.

Research Papers, Lincoln University

Geographically isolated communities around the world are dependent upon the limited assets in local subsistence economies to generate livelihoods. Locally available resources shape and give identity to unique cultural activities that guarantee individual, family and community livelihood sustainability. The social structure provides community relationship networks, which ensure access to, and availability of, resources over long periods. Resources are utilised in ways that reduces vulnerability, stresses and shocks while ensuring long-term resilience. Preparedness and adaptation are embedded into cultural memory, enabling communities to survive in isolated, remote and harsh conditions. Communities’ cultural memories, storytelling, traditional knowledge, interdependence and unwritten cultural norms that build resilience to sustain cultures that have limited interactions with the outside world. This thesis aims to investigate the consequences of transport infrastructure development, mainly of roads, on livelihood strategies of isolated communities in a tourism context in Gilgit-Baltistan, Pakistan. The thesis incorporates a review of literature of transport infrastructure development and livelihood security in reference to vulnerability, resilience and sustainability. Research gaps are identified in terms of transport infrastructure development and tourism, the Sustainable Livelihood Approach, resilience and sustainability. The fieldwork was undertaken using qualitative research methods. Ninety-eight participants were interviewed using open-ended semi-structured interview questions to get an in-depth understanding of livelihood systems, livelihood activities and transport infrastructure development within the tourism context. Gilgit-Baltistan is a disputed mountainous territory in the Asia Subcontinent whose ancient trade routes (silk routes) were severed during the geopolitical upheaval of the partition of the Indian Subcontinent in 1947. An alliance between Pakistan and China resulted in transport infrastructure development of the Karakorum Highway between 1958 and 1978, providing the only road access to the regions isolated communities. Karakoram Highway connects China with Pakistan through Gilgit-Baltistan. Gilgit-Baltistan is going through immense transport infrastructure development, including the China Pakistan Economic Corridor. The road infrastructure is expected to link China and other South Asian and Central Asian countries to the world and provide a direct link for Chinese goods to reach the Persian Gulf. China Pakistan Economic Corridor is part of China’s Belt and Road Initiative project, which aims to improve connectivity and cooperation between 69 Eurasian countries by investing in infrastructure development. Such an immense infrastructural development is expected to enhance the mobility of people, goods and services. In order to understand the impacts of transport infrastructure development, this thesis has analysed livelihood capital status at macro, and micro levels are examined over two time periods (pre-road and post-road). Results show that sustainable farming practices provided long-term resilience to these geographically isolated communities. Transport infrastructure development has been a significant factor to ensure access and has resulted in changes to social inclusion, socio-political structures and livelihood opportunities with a subsequent dependence upon tourism, imported consumer goods and a monetary economy as people divert valuable farmland to building developments and cash crop monocultures. Gilgit-Baltistan is vulnerable to frequent manmade and natural disasters, such as terrorism, earthquakes and landslides. Shocks impact upon the livelihoods of those affiliated with tourism who are forced to revert to subsistence farming practices and alternative livelihood choices. The dependency on external resources and subsequent loss of the cultural memory and farming techniques has created a vulnerability to the unpredictable shocks and disasters that frequently close the singular access road. The thesis finally presents the ‘Livelihood Framework for Transport Infrastructure Development and Tourism (LF-TIDT)’ a guiding tool to understand the impacts of transport infrastructure development at micro and macro levels for tourism planning, policy formulation and implementation and management. Attention is drawn to the newly introduced ‘Location: a Meta Capital’ and its importance in terms of geographically isolated communities. The research also highlights that livelihood capitals are not equally essential to achieve sustainable and resilient livelihood outcomes.

Videos, UC QuakeStudies

A video of a presentation by Richard Conlin during the Community Resilience Stream of the 2016 People in Disasters Conference. The presentation is titled, "Resilience, Poverty, and Seismic Culture".The abstract for this presentation reads as follows: A strategy of resilience is built around the recognition that effective emergency response requires community involvement and mobilization. It further recognizes that many of the characteristics that equip communities to respond most effectively to short term emergencies are also characteristics that build strong communities over the long term. Building resilient communities means integrating our approaches to poverty, community engagement, economic development, and housing into a coherent strategy that empowers community members to engage with each other and with other communities. In this way, resilience becomes a complementary concept to sustainability. This requires an asset-based change strategy where external agencies meet communities where they are, in their own space, and use collective impact approaches to work in partnership. This also requires understanding and assessing poverty, including physical, financial, and social capital in their myriad manifestations. Poverty is not exclusively a matter of class. It is a complex subject, and different communities manifest multiple versions of poverty, which must be respected and understood through the asset-based lens. Resilience is a quality of a community and a system, and develops over time as a result of careful analysis of strengths and vulnerabilities and taking actions to increase competencies and reduce risk situations. Resilience requires maintenance and must be developed in a way that includes practicing continuous improvement and adaptation. The characteristics of a resilient community include both physical qualities and 'soft infrastructure', such as community knowledge, resourcefulness, and overall health. This presentation reviews the experience of some earlier disasters, outlines a working model of how emergency response, resilience, and poverty interact and can be addressed in concert, and concludes with a summary of what the 2010 Chilean earthquake tells us about how a 'seismic culture' can function effectively in communities even when government suffers from unexpected shortcomings.

Research papers, Victoria University of Wellington

This project looks at how destroyed architecture, although physically lost, fundamentally continues to exist within human memories as a non-physical entity. The site chosen is Avonside Girls’ High School in Christchurch, New Zealand, a school heavily damaged during the February 22nd earthquake in 2011. The project focuses on the Main Block, a 1930s masonry building which had always been a symbol for the school and its alumni.  The key theories relevant to this are studies on non-material architecture and memory as these subjects investigate the relationship between conceptual idea and the triggering of it. This research aims to study how to fortify a thought-based architecture against neglect, similar to the retrofitting of physical structures.  In doing so, the importance of the emotive realm of architecture and the idea behind a building (as opposed to the built component itself) is further validated, promoting more broadminded stances regarding the significance of the idea over the object. A new method for disaster recovery and addressing trauma from lost architecture is also acquired. Factors regarding advanced structural systems and programmes are not covered within the scope of this research because the project instead explores issues regarding the boundaries between the immaterial and material.  The project methodology involves communicating a narrative derived from the memories alumni and staff members have of the old school block. The approach for portraying the narrative is based on a list of strategies obtained from case studies.  The final product of the research is a new design for the high school, conveyed through a set of atmospheric drawings that cross-examines the boundaries between the physical and non-physical realms by representing the version of the school that exists solely within memories.

Research papers, The University of Auckland Library

Though generally considered “natural” disasters, cyclones and earthquakes are increasingly being associated with human activities, incubated through urban settlement patterns and the long-term redistribution of natural resources. As society is becoming more urbanized, the risk of human exposure to disasters is also rising. Architecture often reflects the state of society’s health: architectural damage is the first visible sign of emergency, and reconstruction is the final response in the process of recovery. An empirical assessment of architectural projects in post-disaster situations can lead to a deeper understanding of urban societies as they try to rebuild. This thesis offers an alternative perspective on urban disasters by looking at the actions and attitudes of disaster professionals through the lens of architecture, situated in recent events: the 2010 Christchurch earthquake, the 2010 Haiti earthquake, and the 2005 Hurricane Katrina. An empirical, multi-hazard, cross-sectional case study methodology was used, employing grounded theory method to build theory, and a critical constructivist strategy to inform the analysis. By taking an interdisciplinary approach to understanding disasters, this thesis positions architecture as a conduit between two divergent approaches to disaster research: the hazards approach, which studies the disaster cycles from a scientific perspective; and the sociological approach, which studies the socially constructed vulnerabilities that result from disasters, and the elements of social change that accompany such events. Few studies to date have attempted to integrate the multi-disciplinary perspectives that can advance our understanding of societal problems in urban disasters. To bridge this gap, this thesis develops what will be referred to as the “Rittelian framework”—based on the work of UC Berkeley’s architecture professor Horst Rittel (1930-1990). The Rittelian framework uses the language of design to transcend the multiple fields of human endeavor to address the “design problems” in disaster research. The processes by which societal problems are addressed following an urban disaster involve input by professionals from multiple fields—including economics, sociology, medicine, and engineering—but the contribution from architecture has been minimal to date. The main impetus for my doctoral thesis has been the assertion that most of the decisions related to reconstruction are made in the early emergency recovery stages where architects are not involved, but architects’ early contribution is vital to the long-term reconstruction of cities. This precipitated in the critical question: “How does the Rittelian framework contribute to the critical design decisions in modern urban disasters?” Comparative research was undertaken in three case studies of recent disasters in New Orleans (2005), Haiti (2010) and Christchurch (2010), by interviewing 51 individuals who were selected on the basis of employing the Rittelian framework in their humanitarian practice. Contextualizing natural disaster research within the robust methodological framework of architecture and the analytical processes of sociology is the basis for evaluating the research proposition that architectural problem solving is of value in addressing the ‘Wicked Problems’ of disasters. This thesis has found that (1) the nuances of the way disaster agents interpret the notion of “building back better” can influence the extent to which architectural professionals contribute in urban disaster recovery, (2) architectural design can be used to facilitate but also impede critical design decisions, and (3) framing disaster research in terms of design decisions can lead to innovation where least expected. This empirical research demonstrates how the Rittelian framework can inform a wider discussion about post-disaster human settlements, and improve our resilience through disaster research.