<b>Aotearoa has undoubtedly some of the most beautiful landscapes in the world, a privilege for its inhabitants. However, as our cities have developed post-colonisation, the connection between the natural environment and its occupants has diminished. Designers play a vital role within an ever evolving world to progress the built environment in a way that reflects and restores vital values that have been deprioritised. Future practice should prioritise diversity, care for the land, enhancement of community space, and sustainable practices.</b>
This research sets out to demonstrate that new design methodologies can encourage kaitiakitanga, whilst meeting the needs of urban public space. Initially through critical analysis and literature based research, a study of Ōtautahi Christchurch, the South Island’s largest city, was undertaken. The principles of a ‘15 minute city’ were also explored and applied to the city, establishing issues within the built environment that drove the overall research direction.
Through the tools of critical reflection and a research through design methodology, a design toolkit was constructed. This toolkit sets out to provide designers with a simple streamlined method of developing urban interventions that are sustainable and beneficial for human well-being. The toolkit incorporates an abstraction of the ‘15 minute city’ ideology and introduces the concepts of evolving green transportation routes within cities. Ōtautahi Christchurch, a city with a significant history of earthquake-caused damage, was chosen as the primary site for the application of this research’s proposed toolkit. The city becomes a canvas for an urban rebuild that explores and aims to set a precedent for a progressive 21st-century city.
A key finding as the toolkit research developed was the idea of a ‘temporary’ phase or intervention, being added to traditional design methodologies prior to permanent building. The research explains how this temporary phase could more actively engage diverse user groups and create active conversations between communities and designers.
The refined toolkit sets outs proposed timeline phases, methods of site analysis and development of design drivers. Alongside this, a modular architectural system establishes a design proposal for the temporary phase of an individual site within an evolving green route. This outcome provides further opportunity for realistic testing, which would actively involve communities and aims to shift our priorities within urban development. The introduction of the ‘temporary’ phase is beneficial in mitigating psychological implications on people and limiting physical impacts on the landscape.
The final design stage of the thesis applied the toolkit process to three sites in Ōtautahi Christchurch. Through a holistic lens, the toolkit framework set out methods to collate information that provides guidance for development on the sites. While some layers are initiated simply by recognising site characteristics, others are informed through software such as GIS.
Connected by a proposed green transport route, the three initial sites are developed with temporary interventions that utilise the modular design set out previously in the research. Contextualising the interventions on real world sites tested the flexibility of the system and allowed for critical reflection on the applicability of the toolkit to Aotearoa.
The research concludes by identifying future research opportunities and speculates on possible applications of its findings within the real world. Temporary Permanence highlights the significant role that we, as designers, have in shifting urban priorities to create more holistic, sustainable, and inclusive cities for people and the planet.
Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.
DAVID SHEARER to the Prime Minister: Does he stand by his statement “My expectations are that this will be a busy, hard three years’ work and we will need to deliver results for New Zealanders”?
Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his statement that “we don’t favour one group over another”?
PAUL GOLDSMITH to the Minister of Finance: What reports has he received on housing affordability?
GRANT ROBERTSON to the Prime Minister: When his office had a “quick look at the matters involved” with regard to the funding of the Mackenzie Sustainable Futures Trust, whom did they speak to and what documents did they look at to arrive at their conclusion that “we did not find anything that raised concerns to us”?
MELISSA LEE to the Minister for Social Development: What initiatives has the Government put in place to better protect children?
ANDREW WILLIAMS to the Minister of Finance: Does the Government still intend to achieve a budget surplus by 2014/15; if so, how?
GARETH HUGHES to the Minister of Energy and Resources: Does he stand by his statement on the Campbell Live 9 February programme on fracking that, “In Taranaki, it’s actually been done very, very well. There’s been no effect on the environment whatsoever”?
Dr JIAN YANG to the Minister of Health: What progress has been made in providing improved child health services?
Hon DAVID PARKER to the Minister of Finance: Does he stand by his statement regarding migration to Australia “What’s the point of standing in the airport crying about it?”; if so, how many of the 158,167 people that have migrated to Australia since November 2008, as reported by Statistics NZ, are from 18 to 30 years of age in number and percentage terms?
COLIN KING to the Minister of Science and Innovation: How will the Advanced Technology Institute boost business-led research and development?
Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: Why did he use section 27 of the Canterbury Earthquake Recovery Act 2011 to amend the Canterbury Regional Policy Statement instead of using the Order in Council provisions of the Act or developing the recovery strategy or a recovery plan?
SHANE ARDERN to the Minister for Primary Industries: What recent announcements has he made to further improve New Zealand’s biosecurity system?
Rt Hon WINSTON PETERS to the Prime Minister: Does he stand by all his statements?
DAVID SHEARER to the Prime Minister: Does he stand by all his statements?
PAUL GOLDSMITH to the Minister of Finance: What reports has he received on business and economic conditions in New Zealand?
Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his answer to written question 07314 (2013) when he said: "The inquiry team, itself, did not seek permission from Peter Dunne before it obtained his email logs" and does he think it should have?
SIMON O'CONNOR to the Minister of Transport: How will the Government progress the delivery of the next generation of transport projects for Auckland?
Hon DAVID PARKER to the Minister of Finance: Are the proceeds from selling power companies and other assets being used to pay down debt, to build schools and hospitals, to fund irrigation projects, to rebuild Christchurch, or to fund Auckland transport projects?
IAN McKELVIE to the Minister of Police: What updates has she received on how Police are using technology to prevent crime?
JACINDA ARDERN to the Minister of Finance: Does he agree with The Economist that "inequality is one of the biggest social, economic and political challenges of our time"; if so, what is his Government doing to address the fact that New Zealand now has the widest income gap since detailed records began?
PAUL FOSTER-BELL to the Minister of Justice: How is the Government improving its justice and other services to local communities?
Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: When was he first made aware of the September IANZ report which warned the Christchurch City Council that "Continued accreditation beyond May 2013 will depend on a satisfactory outcome of that assessment" and was he advised by CERA or a Ministerial colleague?
JONATHAN YOUNG to the Minister of Broadcasting: What progress has been made on the regional rollout of the digital switchover for New Zealand television viewers?
GARETH HUGHES to the Minister of Conservation: Will he implement the recommendations to protect Maui's dolphins contained in the report of this year's meeting of the International Whaling Commission Scientific Committee; if not, why not
Questions to Members
JACINDA ARDERN to the Chairperson of the Social Services Committee: On which date and time, if any, did he receive the Minister for Social Development's written responses to the pre-hearing questions for the 2013/14 Estimates review for Vote Social Development?
JACINDA ARDERN to the Chairperson of the Social Services Committee: On what date did the Minister for Social Development appear before the Committee to answer questions regarding the 2013/14 Estimates review for Vote Social Development?
Dr MEGAN WOODS to the Chairperson of the Education and Science Committee: Did he consider inviting the Minister to appear again to answer questions around responses to questions on the 2013/14 Estimates for Vote Education, if so, did he receive any advice about the Minister's willingness to appear again?
Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.