A photograph of a crack in a paddock on the Greendale fault line.
A photograph of soil uplift in a paddock on the Greendale fault line.
A photograph of a crack in a paddock on the Greendale fault line.
A photograph of soil uplift in a paddock on the Greendale fault line.
A photograph of a fence on the Greendale Fault line which has been damaged by the 4 September 2010 earthquake. The wire has been pulled off the posts and is hanging loose. The ground has also shifted so the fence is no longer straight.
A photograph of a fence on the Greendale Fault line which has been damaged by the 4 September 2010 earthquake. The wire has been pulled off the posts and is hanging loose. The ground has also shifted so the fence is no longer straight.
A photograph of a fence on the Greendale Fault line which has been damaged by the 4 September 2010 earthquake. The wire has been pulled off the posts and is hanging loose. The ground has also shifted so the fence is no longer straight.
A photograph of damage to the ground of a paddock on the Greendale fault line.
A photograph of University of Canterbury Geology students surveying land on the Greendale fault line.
A photograph of damage to the ground of a paddock on the Greendale fault line.
A photograph of damage to the ground of a paddock on the Greendale fault line.
A photograph of damage to the ground of a paddock on the Greendale fault line.
A photograph of a section of road lying on the Greendale Fault line which has cracked due to the 4 September 2010 earthquake. In the distance, police tape and cones have been used to close off the road.
A photograph of people examining a section of road lying on the Greendale Fault line which has large cracks caused by the 4 September 2010 earthquake. Police tape and cones have been used to close off the road.
A photograph of a fence on the Greendale Fault line which has shifted considerably due to the 4 September 2010 earthquake. Police tape and cones have been placed across the road to close it off.
A photograph of people examining a section of road lying on the Greendale Fault line which has large cracks caused by the 4 September 2010 earthquake. Police tape and cones have been used to close off the road.
A photograph of people examining a section of road lying on the Greendale Fault line which has large cracks caused by the 4 September 2010 earthquake. Police tape and cones have been used to close off the road.
A photograph of a fence on the Greendale Fault line which has shifted considerably due to the 4 September 2010 earthquake. Police tape and cones have been placed across the road to close it off.
A photograph of people examining a section of road lying on the Greendale Fault line which has large cracks caused by the 4 September 2010 earthquake. Police tape and cones have been used to close off the road.
A photograph of a section of road lying on the Greendale Fault line which has shifted considerably and cracked due to the 4 September 2010 earthquake. In the distance, police tape and cones have been used to close off the road.
A map showing the extent of the Greendale fault trace.
Rolleston, South Island, NZ
A photograph of University of Canterbury Geology staff and students using ground penetrating radar (GPR) to survey land on the Greendale fault line.
A photograph of University of Canterbury Geology student Matt Cockcroft using ground penetrating radar (GPR) to survey land on the Greendale fault line.
A photograph of University of Canterbury Geology staff and students using ground penetrating radar (GPR) to survey land on the Greendale fault line.
A photograph of University of Canterbury Geology student Matt Cockcroft using ground penetrating radar (GPR) to survey land on the Greendale fault line.
A photograph of University of Canterbury Geology students Zach Whitman and Dewiyani Bealing using ground penetrating radar equipment to survey land on the Greendale fault line.
A photograph of University of Canterbury Geology staff and students using a dynamic cone penetrometer to measure soil strength of a paddock on the Greendale fault line.
One oblong perspex covered 3-D model of the fault plains associated with the 4 September 2010 Darfield earthquake; top of the model also acts as a map overlay. Geologists continue to study the 4 September 2010 earthquake and consider it is likely to have been a complex event with several faults rupturing simultaneously. This model provides one ...
The Mw 7.1 Darfield earthquake generated a ~30 km long surface rupture on the Greendale Fault and significant surface deformation related to related blind faults on a previously unrecognized fault system beneath the Canterbury Plains. This earthquake provided the opportunity for research into the patterns and mechanisms of co-seismic and post-seismic crustal deformation. In this thesis I use multiple across-fault EDM surveys, logic trees, surface investigations and deformation feature mapping, seismic reflection surveying, and survey mark (cadastral) re-occupation using GPS to quantify surface displacements at a variety of temporal and spatial scales. My field mapping investigations identified shaking and crustal displacement-induced surface deformation features south and southwest of Christchurch and in the vicinity of the projected surface traces of the Hororata Blind and Charing Cross Faults. The data are consistent with the high peak ground accelerations and broad surface warping due to underlying reverse faulting on the Hororata Blind Fault and Charing Cross Fault. I measured varying amounts of post-seismic displacement at four of five locations that crossed the Greendale Fault. None of the data showed evidence for localized dextral creep on the Greendale Fault surface trace, consistent with other studies showing only minimal regional post-seismic deformation. Instead, the post-seismic deformation field suggests an apparent westward translation of northern parts of the across-fault surveys relative to the southern parts of the surveys that I attribute to post-mainshock creep on blind thrusts and/or other unidentified structures. The seismic surveys identified a deformation zone in the gravels that we attribute to the Hororata Blind Fault but the Charing Cross fault was not able to be identified on the survey. Cadastral re-surveys indicate a deformation field consistent with previously published geodetic data. We use this deformation with regional strain rates to estimate earthquake recurrence intervals of ~7000 to > 14,000 yrs on the Hororata Blind and Charing Cross Faults.