Search

found 143 results

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. Monumental masons is a gravestone maker. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. This was a headstone makers store. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of The New Zealand Army, along with Police, minding the cordons. This was beside The Press building, and behind the Christchurch Cathedral. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. A second hand dealer store. This is next to Penny Lane which had to relocate down the street. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. Ascot TV. This has relocated further south on Colombo Street. Apparently their building on Cranford Street was also severely damaged. Note: these photos were taken on a cellphone; mind the qu...

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. Angus Donaldson copy service. This has moved down the road on Colombo Street. It is now sharing the premises with Penny Lane Records. Note: these photos were taken on a cellphone; mind the qu...

Research papers, University of Canterbury Library

A team of earthquake geologists, seismologists and engineering seismologists from GNS Science, NIWA, University of Canterbury, and Victoria University of Wellington have collectively produced an update of the 2002 national probabilistic seismic hazard (PSH) model for New Zealand. The new model incorporates over 200 new onshore and offshore fault sources, and utilises newly developed New Zealand-based scaling relationships and methods for the parameterisation of the fault and subduction interface sources. The background seismicity model has also been updated to include new seismicity data, a new seismicity regionalisation, and improved methodology for calculation of the seismicity parameters. Background seismicity models allow for the occurrence of earthquakes away from the known fault sources, and are typically modelled as a grid of earthquake sources with rate parameters assigned from the historical seismicity catalogue. The Greendale Fault, which ruptured during the M7.1, 4 September 2010 Darfield earthquake, was unknown prior to the earthquake. However, the earthquake was to some extent accounted for in the PSH model. The maximum magnitude assumed in the background seismicity model for the area of the earthquake is 7.2 (larger than the Darfield event), but the location and geometry of the fault are not represented. Deaggregations of the PSH model for Christchurch at return periods of 500 years and above show that M7-7.5 fault and background source-derived earthquakes at distances less than 40 km are important contributors to the hazard. Therefore, earthquakes similar to the Darfield event feature prominently in the PSH model, even though the Greendale Fault was not an explicit model input.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage occurred to unreinforced masonry buildings throughout the region during the mainshock and subsequent large aftershocks. Particularly extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, a geotechnical reconnaissance was conducted over a period of six days (10–15 September 2010) by a team of geotechnical/earthquake engineers and geologists from New Zealand and USA (GEER team: Geo-engineering Extreme Event Reconnaissance). JGS (Japanese Geotechnical Society) members from Japan also participated in the reconnaissance team from 13 to 15 September 2010. The NZ, GEER and JGS members worked as one team and shared resources, information and logistics in order to conduct thorough and most efficient reconnaissance covering a large area over a very limited time period. This report summarises the key evidence and findings from the reconnaissance.

Research papers, The University of Auckland Library

The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.

Images, eqnz.chch.2010

The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.

Images, eqnz.chch.2010

The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.

Images, Canterbury Museum

One multi-coloured soft-cover book entitled 'Quake: the Big Canterbury Earthquake of 2010' with colour photographs by David Wethey and text by Ian Stuart. ‘Quake: The Big Canterbury Earthquake of 2010’ contains aerial photographs of the damage to many major heritage sites in Canterbury between Kaiapoi and Darfield after the 4 September 2010 ear...

Videos, eqnz.chch.2010

At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.