Search

found 41 results

Images, Alexander Turnbull Library

Photographs of central Christchurch after the 2010-2012 earthquakes taken 25 February 2012 by Sean McMahon. Locations are chiefly Manchester, Saint Asaph, Cashel, Columbo and Lichfield Streets, and the Bridge of Remembrance. Images show fencing around areas closed to the public, damaged and collapsed commercial buildings, cleared sites, re-opened Cashel Street area with shops and a cafe. Source of title - Title supplied by Library Quantity: 34 digital photograph(s).

Other, National Library of New Zealand

An initiative developed by the Christchurch City Council in which the community can share their ideas on a new vision for the future development of the central city following the Canterbury earthquakes.

Images, Alexander Turnbull Library

Three people stand looking down at a small model of the 'Christchurch CBD'. One of the people says 'Love the safer low-rise plan What's the scale?' A second man says 'Scale? Er this is the actual size!' Context: Christchurch Mayor Bob Parker has dedicated the draft plan for a new-look Christchurch CBD to those lost in the February earthquake. The CBD will be about a quarter of its original size under the draft plan which was unanimously adopted by the council today. (TVNZ 11 August 2011) Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A rescue worker carries the dead body of a woman out of the crumbled remains of a building. Nearby is a copy of the 'Building Code'. Context - there are questions being asked about whether some of the buildings that collapsed too readily in the Christchurch earthquake of 22 February 2011 had been subject to stringent enough building code regulations. The Department of Building and Housing said the vertical shaking in the central business district was both extreme and unusual and early indications suggest it was much more violent than designed for in the building code standards which are based on the kind of shaking expected to happen every 500 years. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Depicts huge elderly woman with 'CERA' on her dress scolding smaller adult dressed as schoolboy near bustop with sign 'CBD red zone tours' Text reads 'And don't talk to strangers and don't cross the road and remember to eat your lunch..' Context: After the 22 Feburary 2011 earthquake in Christchurch, the central business district (CBD) was marked as a red zone. Red zone areas were deemed unsuitable for habitation due to significant damage and at high risk of further damage from low levels of earth shaking. CERA (Christchurch Earthquake Recovery Authority) ran public bus tours of the Christchurch CBD from November to December 2011. For safety reasons the public was not allowed off the buses as it was a dangerous and active demolition site. Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

The region in and around Christchurch, encompassing Christchurch city and the Selwyn and Waimakariri districts, contains more than 800 road, rail, and pedestrian bridges. Most of these bridges are reinforced concrete, symmetric, and have small to moderate spans (15–25 m). The 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake induced high levels of localized ground shaking (Bradley and Cubrinovski 2011, page 853 of this issue; Guidotti et al. 2011, page 767 of this issue; Smyrou et al. 2011, page 882 of this issue), with damage to bridges mainly confined to the central and eastern parts of Christchurch. Liquefaction was evident over much of this part of the city, with lateral spreading affecting bridges spanning both the Avon and Heathcote rivers.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).