A business owner wants more stringent background checks for people creating professional online profiles after discovering a potential business advisor is currently on home detention for corruption.
Gerard Gallagher was convicted in June after trying to personally profit from information obtained while working for the Canterbury Earthquake Recovery Authority and Ōtākaro Limited between 2014 and 2017.
Online, he promotes himself as a Business Advisor despite still serving a sentence of 12 months' home detention.
Niva Chittock reports.
Canterbury got a big shock this morning with a long and strong earthquake that sent people running for the nearest door frame. While the region seems to have escaped any major damage, it's left locals thankful it wasn't worse. The quake measured 6.0 on the richter scale and was centred 45 kilometes north of Geraldine. Since then, there have been more than 40 aftershocks. Checkpoint producer Anastasia Hedge has been near the epicentre.
An icon of Whakaraupō Lyttelton Harbour is set to re-open tomorrow, after being damaged in the Canterbury Earthquakes. The Governors Bay jetty, locally known for its extraordinary length and unofficial jetty jump competitions, has been closed since 2015. Now, it's back to its former glory, just in time for summer. Niva Chittock went for a sneak peek ahead of the official opening. [embed] https://players.brightcove.net/6093072280001/default_default/index.html?videoId=6338047392112
Twelve years after the CTV building collapsed during the Christchurch earthquake, families of the victims killed inside have told an engineering disciplinary hearing they want justice and accountability. 115 people died when the six-storey building came down in February 2011. A complaint against an engineer whose firm designed the building is being heard by an Engineering New Zealand disciplinary committee. Dr Alan Reay lost a High Court bid to stop the hearing. Anna Sargent reports.
The families of the victims of the CTV building collapse in Christchurch have told an engineering disciplinary hearing they've been waiting 12 years for accountability.
The building collapsed in the February 2011 earthquake killing 115 people.
It was designed by Dr Alan Reay's firm - Reay was criticised by the Earthquake Royal Commission for handing sole responsibility of it to an inexperienced employee.
Reay has tried to stop the disciplinary process going ahead but it got underway in Christchurch today.
Reporter Anna Sargent spoke to Charlotte Cook.
The Prime Minister Chris Hipkins today announced an additional three hundred and one million dollar boost for the rebuild of earthquake damaged Christchurch schools, and said the programme in Christchurch may be a template for repairing flood damaged schools in the North Island.
Some schools are still waiting to be repaired more than a decade after the devastating quakes.
On his first visit to Christchurch since becoming Prime Minister, Chris Hipkins visited one of the schools still in the midst of its rebuild process, and to celebrate the progress being made.
Our reporter Rachel Graham and videographer Nate McKinnon went along.
There's good news of sorts on the building-inspection front in Auckland.
After nearly seven days of fanning out across the city inspecting damaged buildings - the biggest such deployment of building inspectors since the Christchurch earthquake emergency - the operation will be scaled back this weekend.
There are currently around 95 inspectors in the field who have checked 3,500 buildings. As of 6pm last night 190 buildings were red stickered, and a further 790 yellow stickered.
The most red stickered areas are Mount Albert/Mt Eden with 54 and the North Shore with 32.
Auckland Council general manager building consents Ian McCormick spoke to Corin Dann.
More than 11,000 people reported feeling the earthquake that hit just after 2am on Friday.
The magnitude 4.8 quake was centred 5-kilometres south of Te Aroha, at a depth of 6-kilometres.
People from Kaitaia, through to the sodden regions of Auckland, Bay of Plenty, Coromandel, and even down in Christchurch, reported feeling it.
A series of weaker aftershocks began to strike 40 minutes later, although there are no immediate reports of damage as of yet.
It's not the first quake to hit Te Aroha this year - a 5.1 quake rattled the town on January 4.
Te Kuiti resident Zane Burdett and Kees Meinderts from Motumaoho, just south of Morrinsville, spoke to Corin Dann.
A local developer is looking to reshape Ashburton's triangle, the historic retail centre of the town. Robert Grice owns a number of buildings on Victoria Street that require earthquake strengthening and he wants to redevelop the existing shops into a new mixed use hospitality precinct named The Ash. Jonathan also discusses an attempt to add quarter of a million dollars to ECan's annual plan budget which has been labelled a "slap in the face" by Environment Canterbury councillor Ian Mackenzie. And a hold-up of plumbing parts and red tape at the border means the Staveley Ice Rink won't be open to skaters and curlers until at least mid-June. Local Democracy Reporter - Mid Canterbury c from the Ashburton Guardian
Two teens. Two tragedies. And an unlikely friendship. Christchurch author Blair McMillan opens his novel with the escalating war in Syria, and the plight of Amir and his family. His surgeon father decides to try to send him and mother away from the violence - and Amir finds himself on a perilous journey - one that puts him on the other side of the planet. His path crosses with Milly, an angry teenager still reeling from the loss of her mother in the Christchurch earthquakes. Blair McMillan runs a swim school with his wife Karen by day - and Here Upon the Tide is his debut novel. He joins Susie to talk about it.
The Anglican church is considering whether to sell Christchurch's cardboard cathedral to plug a shortfall in the budget for restoring the original descimated in the earthquakes. The church leadership will discuss the future of the cardboard building during meetings at the weekend. It opened opposite Latimer square in 2013 as a temporary place of worship, but soom became popular with tourists too. Meanwhile a 2017 estimate put the cost of restoring the actual Cathedral at just over $100 million, but that's since ballooned to north of $155 million. Harcourts real estate agent, Mark O'Loughlin, speaks to Lisa Owen from Christchurch. [embed] https://players.brightcove.net/6093072280001/default_default/index.html?videoId=6336786667112
A magnitude six earthquake which struck in Canterbury just before quarter-past-nine Wednesday morning has left some nearby residents feeling a bit shaken.
The quake, which struck 45 kilometres north of Geraldine at a depth of ten kilometres, was located in the Southern Alps, away from populated areas.
It was widely felt in Geraldine, Timaru and Temuka - though there are no reports of serious damage or injury.
Timaru District Council says it's closing a stadium and other facilities for assessment.
Two people who experienced the quake, Janene Adams who's deputy chair of the Geraldine Community Board, and from further north, and the operator of the Mount Somers Holiday Park, Maureen Meanwell, spoke with Charlotte Cook
The seismic performance of soil profiles with potentially liquefiable deposits is a complex phenomenon that requires a thorough understanding of the soil properties and ground motion characteristics. The limitations of simplified liquefaction assessment methods have prompted an increase in the use of non-linear dynamic analysis methods. Focusing on onedimensional site response of a soil column, this thesis validated a soil constitutive model using in-situ pore pressure measurements and then assessed the influence of input ground motion characteristics on soil column response using traditional and newly developed metrics. Pore pressure recordings during the Canterbury Earthquake Sequence (CES) in New Zealand were used to validate the PM4Sand constitutive model. Soil profile characterization was key to accurate prediction of excess pore pressure response and accounting for any densification during the CES. Response during multiple earthquakes was captured effectively and cross-layer interaction demonstrated the model capability to capture soil response at the system-level. Synthetic and observed ground motions from the Christchurch earthquake were applied to the validated soil column to quantify the performance of synthetic motions. New metrics were developed to facilitate a robust comparison to assess performance. The synthetic input motions demonstrated a slightly larger acceleration and excess pore pressure response compared to the observed input motions. The results suggest that the synthetic motions may accumulate higher excess pore pressure at a faster rate and with fewer number of cycles in the shear response. This research compares validated soil profile subject to spectrally-matched pulse and non-pulse motions, emphasizing the inclusion of pulse motions with distinctive characteristics in ground motion suites for non-linear dynamic analysis. However, spectral matching may lead to undesired alterations in pulse characteristics. Cumulative absolute velocity and significant duration significantly differed between these two groups compared to the other key characteristics and contributed considerably to the liquefaction response. Unlike the non-pulse motions, not all of the pulse motions triggered liquefaction, likely due to their shorter significant duration. Non-pulse motions developed a greater spatial extent of liquefaction triggering in the soil profile and extended to a greater depth.
As Auckland and Northland brace for more atrocious weather, city leaders are calling for funding to repair the city's broken infrastructure to be along the lines of the help given to Christchurch after the quakes. Auckland deputy mayor Desley Simpson says that the damage so far is equivalent to the biggest non earthquake event the country has ever had and should be treated accordingly. The Opportunities Party says the "alliance" model established after the earthquakes, was effective and would work for Auckland's rebuild, because it provides a structure that the Central Government can fund directly. ToP leader Raf Manji was a Christchurch councillor after the quakes and closely involved in the rebuild. He tells Kathryn Ryan it is vital to ensure water and transport infrastructure is repaired quickly and efficiently, especially with a view to future extreme weather events - and there is much to learn from the post-quake rebuild.
The susceptibility of precast hollow-core floors to sustain critical damage during an earthquake is now well-recognized throughout the structural engineering community in New Zealand. The lack of shear reinforcement in these floor units is one of the primary reasons causing issues with the seismic performance of these floors. Recent research has revealed that the unreinforced webs of these floor units can crack at drift demands as low as 0.6%. Such observation indicates that potentially many of the existing building stock incorporating hollow-core flooring systems in cities of relatively high seismic activity (e.g. Wellington and Christchurch) that probably have already experienced a level of shaking higher than 0.6% drift in previous earthquakes might already have their floor units cracked. However, there is little information available to reliably quantify the residual gravity load-carrying capacity of cracked hollow-core floor units, highlighting the need to understand the post-cracking behavior of hollow-core floor units to better quantify the extent of the risk that cracked hollow-core floor units pose.
In 2016, the Building (Earthquake-prone Buildings) Amendment Act 2016 was introduced to address the issue of seismic vulnerability amongst existing buildings in Aotearoa New Zealand. This Act introduced a mandatory scheme to remediate buildings deemed particularly vulnerable to seismic hazard, as recommended by the 2012 Royal Commission into the Canterbury earthquake sequence of 2010–2011. This Earthquake-prone Building (EPB) framework is unusual internationally for the mandatory obligations that it introduces. This article explores and critiques the operation of the scheme in practice through an examination of its implementation provisions and the experiences of more recent seismic events (confirmed by engineering research). This analysis leads to the conclusion that the operation of the current scheme and particularly the application of the concept of EPB vulnerability excludes large numbers of (primarily urban) buildings which pose a significant risk in the event of a significant (but expected) seismic event. As a result, the EPB scheme fails to achieve its goals and instead may create a false impression that it does so
This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i
<b>Aotearoa has undoubtedly some of the most beautiful landscapes in the world, a privilege for its inhabitants. However, as our cities have developed post-colonisation, the connection between the natural environment and its occupants has diminished. Designers play a vital role within an ever evolving world to progress the built environment in a way that reflects and restores vital values that have been deprioritised. Future practice should prioritise diversity, care for the land, enhancement of community space, and sustainable practices.</b>
This research sets out to demonstrate that new design methodologies can encourage kaitiakitanga, whilst meeting the needs of urban public space. Initially through critical analysis and literature based research, a study of Ōtautahi Christchurch, the South Island’s largest city, was undertaken. The principles of a ‘15 minute city’ were also explored and applied to the city, establishing issues within the built environment that drove the overall research direction.
Through the tools of critical reflection and a research through design methodology, a design toolkit was constructed. This toolkit sets out to provide designers with a simple streamlined method of developing urban interventions that are sustainable and beneficial for human well-being. The toolkit incorporates an abstraction of the ‘15 minute city’ ideology and introduces the concepts of evolving green transportation routes within cities. Ōtautahi Christchurch, a city with a significant history of earthquake-caused damage, was chosen as the primary site for the application of this research’s proposed toolkit. The city becomes a canvas for an urban rebuild that explores and aims to set a precedent for a progressive 21st-century city.
A key finding as the toolkit research developed was the idea of a ‘temporary’ phase or intervention, being added to traditional design methodologies prior to permanent building. The research explains how this temporary phase could more actively engage diverse user groups and create active conversations between communities and designers.
The refined toolkit sets outs proposed timeline phases, methods of site analysis and development of design drivers. Alongside this, a modular architectural system establishes a design proposal for the temporary phase of an individual site within an evolving green route. This outcome provides further opportunity for realistic testing, which would actively involve communities and aims to shift our priorities within urban development. The introduction of the ‘temporary’ phase is beneficial in mitigating psychological implications on people and limiting physical impacts on the landscape.
The final design stage of the thesis applied the toolkit process to three sites in Ōtautahi Christchurch. Through a holistic lens, the toolkit framework set out methods to collate information that provides guidance for development on the sites. While some layers are initiated simply by recognising site characteristics, others are informed through software such as GIS.
Connected by a proposed green transport route, the three initial sites are developed with temporary interventions that utilise the modular design set out previously in the research. Contextualising the interventions on real world sites tested the flexibility of the system and allowed for critical reflection on the applicability of the toolkit to Aotearoa.
The research concludes by identifying future research opportunities and speculates on possible applications of its findings within the real world. Temporary Permanence highlights the significant role that we, as designers, have in shifting urban priorities to create more holistic, sustainable, and inclusive cities for people and the planet.
Landslides are significant hazards, especially in seismically-active mountainous regions, where shaking amplified by steep topography can result in widespread landsliding. These landslides present not only an acute hazard, but a chronic hazard that can last years-to-decades after the initial earthquake, causing recurring impacts. The Mw 7.8 Kaikōura earthquake caused more than 20,000 landslides throughout North Canterbury and resulted in significant damage to nationally significant infrastructure in the coastal transport corridor (CTC), isolating Kaikōura from the rest of New Zealand. In the years following, ongoing landsliding triggered by intense rainfall exacerbated the impacts and slowed the recovery process. However, while there is significant research on co-seismic landslides and their initial impacts in New Zealand, little research has explored the evolution of co-seismic landslides and how this hazard changes over time. This research maps landslides annually between 2013 and 2021 to evaluate the changes in pre-earthquake, co-seismic and post-earthquake rates of landsliding to determine how landslide hazard has changed over this time. In particular, the research explores how the number, area, and spatial distribution of landslides has changed since the earthquake, and whether post-earthquake mitigation works have in any way affected the long-term landslide hazard. Mapping of landslides was undertaken using open-source, medium resolution Landsat-8 and Sentinel-2 satellite imagery, with landslides identified visually and mapped as single polygons that capture both the source zone and deposit. Three study areas with differing levels of post-earthquake mitigation are compared: (i) the northern CTC, where the majority of mitigation was in the form of active debris removal; (ii) the southern CTC, where mitigation was primarily via passive protection measures; and (iii) Mount Fyffe, which has had no mitigation works since the earthquake. The results show that despite similar initial impacts during the earthquake, the rate of recovery in terms of landslide rates varies substantially across the three study areas. In Mount Fyffe, the number and area of landslides could take 45 and 22 years from 2021 respectively to return to pre-earthquake levels at the current rate. Comparatively, in the CTC, it could take just 5 years and 3-4 years from 2021 respectively. Notably, the fastest recovery in terms of landslide rates in the CTC was primarily located directly along the transport network, whereas what little recovery did occur in Mount Fyffe appeared to follow no particular pattern. Importantly, recovery rates in the northern CTC were notably higher than in the southern CTC, despite greater co-seismic impacts in the former. Combined, these results suggest the active, debris removal mitigation undertaken in the northern CTC may have had the effect of dramatically reducing the time for landslide rates to return to pre-earthquake levels. The role of slope angle and slope aspect were explored to evaluate if these observations could be driven by local differences in topography. The Mount Fyffe study area has higher slope angles than the CTC as a whole and landslides predominantly occurred on slightly steeper slopes than in the CTC. This may have contributed to the longer recovery times for landsliding in Mount Fyffe due to greater gravitational instability, however the observed variations are minor compared to the differences in recovery rates. In terms of slope aspect, landslides in Mount Fyffe preferentially occurred on north- and south-facing slopes whereas landslides in the CTC preferred the east- and south-facing slopes. The potential role of these differences in landslide recovery remains unclear but may be related to the propagation direction of the earthquake and the tracking direction of post-earthquake ex-tropical cyclones. Finally, landslides in the CTC are observed to be moving further away from the transport network and the number of landslides impacting the CTC decreased significantly since the earthquake. Nevertheless, the potential for further landslide reactivation remains. Therefore, despite the recovery in the CTC, it is clear that there is still risk of the transport network being impacted by further landsliding, at least for the next 3-5 yrs.
The research is funded by Callaghan Innovation (grant number MAIN1901/PROP-69059-FELLOW-MAIN) and the Ministry of Transport New Zealand in partnership with Mainfreight Limited. Need – The freight industry is facing challenges related to climate change, including natural hazards and carbon emissions. These challenges impact the efficiency of freight networks, increase costs, and negatively affect delivery times. To address these challenges, freight logistics modelling should consider multiple variables, such as natural hazards, sustainability, and emission reduction strategies. Freight operations are complex, involving various factors that contribute to randomness, such as the volume of freight being transported, the location of customers, and truck routes. Conventional methods have limitations in simulating a large number of variables. Hence, there is a need to develop a method that can incorporate multiple variables and support freight sustainable development. Method - A minimal viable model (MVM) method was proposed to elicit tacit information from industrial clients for building a minimally sufficient simulation model at the early modelling stages. The discrete-event simulation (DES) method was applied using Arena® software to create simulation models for the Auckland and Christchurch corridor, including regional pick-up and delivery (PUD) models, Christchurch city delivery models, and linehaul models. Stochastic variables in freight operations such as consignment attributes, customer locations, and truck routes were incorporated in the simulation. The geographic information system (GIS) software ArcGIS Pro® was used to identify and analyse industrial data. The results obtained from the GIS software were applied to create DES models. Life cycle assessment (LCA) models were developed for both diesel and battery electric (BE) trucks to compare their life cycle greenhouse gas (GHG) emissions and total cost of ownership (TCO) and support GHG emissions reduction. The line-haul model also included natural hazards in several scenarios, and the simulation was used to forecast the stock level of Auckland and Christchurch depots in response to each corresponding scenario. Results – DES is a powerful technique that can be employed to simulate and evaluate freight operations that exhibit high levels of variability, such as regional pickup and delivery (PUD) and linehaul. Through DES, it becomes possible to analyse multiple factors within freight operations, including transportation modes, routes, scheduling, and processing times, thereby offering valuable insights into the performance, efficiency, and reliability of the system. In addition, GIS is a useful tool for analysing and visualizing spatial data in freight operations. This is exemplified by their ability to simulate the travelling salesman problem (TSP) and conduct cluster analysis. Consequently, the integration of GIS into DES modelling is essential for improving the accuracy and reliability of freight operations analysis. The outcomes of the simulation were utilised to evaluate the ecological impact of freight transport by performing emission calculations and generating low-carbon scenarios to identify approaches for reducing the carbon footprint. LCA models were developed based on simulation results. Results showed that battery-electric trucks (BE) produced more greenhouse gas (GHG) emissions in the cradle phase due to battery manufacturing but substantially less GHG emissions in the use phase because of New Zealand's mostly renewable energy sources. While the transition to BE could significantly reduce emissions, the financial aspect is not compelling, as the total cost of ownership (TCO) for the BE truck was about the same for ten years, despite a higher capital investment for the BE. Moreover, external incentives are necessary to justify a shift to BE trucks. By using simulation methods, the effectiveness of response plans for natural hazards can be evaluated, and the system's vulnerabilities can be identified and mitigated to minimize the risk of disruption. Simulation models can also be utilized to simulate adaptation plans to enhance the system's resilience to natural disasters. Novel contributions – The study employed a combination of DES and GIS methods to incorporate a large number of stochastic variables and driver’s decisions into freight logistics modelling. Various realistic operational scenarios were simulated, including customer clustering and PUD truck allocation. This showed that complex pickup and delivery routes with high daily variability can be represented using a model of roads and intersections. Geographic regions of high customer density, along with high daily variability could be represented by a two-tier architecture. The method could also identify delivery runs for a whole city, which has potential usefulness in market expansion to new territories. In addition, a model was developed to address carbon emissions and total cost of ownership of battery electric trucks. This showed that the transition was not straightforward because the economics were not compelling, and that policy interventions – a variety were suggested - could be necessary to encourage the transition to decarbonised freight transport. A model was developed to represent the effect of natural disasters – such as earthquake and climate change – on road travel and detour times in the line haul freight context for New Zealand. From this it was possible to predict the effects on stock levels for a variety of disruption scenarios (ferry interruption, road detours). Results indicated that some centres rather than others may face higher pressure and longer-term disturbance after the disaster subsided. Remedies including coastal shipping were modelled and shown to have the potential to limit the adverse effects. A philosophical contribution was the development of a methodology to adapt the agile method into the modelling process. This has the potential to improve the clarification of client objectives and the validity of the resulting model.