A city’s planted trees, the great majority of which are in private gardens, play a fundamental role in shaping a city’s wild ecology, ecosystem functioning, and ecosystem services. However, studying tree diversity across a city’s many thousands of separate private gardens is logistically challenging. After the disastrous 2010–2011 earthquakes in Christchurch, New Zealand, over 7,000 homes were abandoned and a botanical survey of these gardens was contracted by the Government’s Canterbury Earthquake Recovery Authority (CERA) prior to buildings being demolished. This unprecedented access to private gardens across the 443.9 hectares ‘Residential Red Zone’ area of eastern Christchurch is a unique opportunity to explore the composition of trees in private gardens across a large area of a New Zealand city. We analysed these survey data to describe the effects of housing age, socio-economics, human population density, and general soil quality, on tree abundance, species richness, and the proportion of indigenous and exotic species. We found that while most of the tree species were exotic, about half of the individual trees were local native species. There is an increasing realisation of the native tree species values among Christchurch citizens and gardens in more recent areas of housing had a higher proportion of smaller/younger native trees. However, the same sites had proportionately more exotic trees, by species and individuals, amongst their larger planted trees than older areas of housing. The majority of the species, and individuals, of the larger (≥10 cm DBH) trees planted in gardens still tend to be exotic species. In newer suburbs, gardens in wealthy areas had more native trees than gardens from poorer areas, while in older suburbs, poorer areas had more native big trees than wealthy areas. In combination, these describe, in detail unparalleled for at least in New Zealand, how the tree infrastructure of the city varies in space and time. This lays the groundwork for better understanding of how wildlife distribution and abundance, wild plant regeneration, and ecosystem services, are affected by the city’s trees.
Eccentrically Braced Frames (EBFs) are a widely used seismic resisting structural steel system. Since their inception in the late 1970s, they have been a viable option with an available stiffness that is between simple braced systems and moment resisting systems. A similar concept, the linked column frame (LCF), uses shear links between two closely spaced columns. In both cases, the key component is the active link or the shear link, and this component is the objective of this study. The performance of high rise EBF buildings in the 2010 and 2011 Christchurch earthquakes was beyond that which was expected, especially considering the very high accelerations recorded. As the concrete high-rises were torn down, two EBF buildings remained standing and only required some structural repair. These events prompted a renewed interest in bolted shear links, as well as their performance. While some research into replaceable shear links had already been done (Mansour, 2011), the objectives of this study were to improve on the shear link itself, with the consideration that links built in the future are likely to be bolted. The main components of this study were to: 1. Reduce or eliminate the requirements for intermediate web stiffeners, as they were suspected of being detrimental to performance. Furthermore, any reduction in stiffening requirements is a direct fabrication cost saving. Links with low web aspect ratios were found to achieve exceptional ductilities when no stiffeners were included, prompting new design equations. 2. Ensure that the stresses in the ends of links are adequately transferred into the endplates without causing fractures. Although most of the experimental links had web doubler plates included, four had varied lengths of such doubler plates from 0.0 in. to 8.0 in. The link without any doubler plates performed to a similar level to its peers, and thus it is likely that links with quality end details may not need web doubler plates at all. 3. Evaluate the performance of a link with double sided stiffeners without the use of web welds, as opposed to conventional single sided, welded stiffeners. This link performed well, and web-weld-less double sided stiffeners may be an economical alternative to conventional stiffeners for deeper sections of links. 4. Evaluate the performance of a link with thin endplates that are made efficient with the use of gusset plates. This link performed to an acceptable level and provides evidence for a cost effective alternative to thick endplates, especially considering the high overstrength end moments in links, typically requiring 16-bolt connections. 5. Examine the potential use of an alternative EBF arrangement where the collector beam is over sized, and the link section is formed by cutting out parts of the beam's web. After running a series of finite element models each with a unique variation, a number of approximate design rules were derived such that future research could develop this idea further experimentally. 6. Ensure that during testing, the secondary elements (members that are not the shear link), do not yield and are not close to yielding. None of the instrumented elements experienced any unexpected yielding, however the concerns for high stresses in the collector beam panel zone during design were warranted. The use of an existing New Zealand design equation is recommended as an extra check for design codes worldwide. The above objectives were mainly conducted experimentally, except: the data set for item 1 was greatly expanded through the use of a calibrated numerical model which was then used in an extensive parametric study; item 5 was purely finite element based; and, a small parametric study was included for item 3 in an attempt to expand on the trends found there.
A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.