Search

found 649 results

Images, UC QuakeStudies

A photograph of a badly-damaged building on Manchester Street, which previously housed the Treehouse bar and nightclub. The roof and second storey of the building have been temporarily repaired and the building is fenced off.

Research papers, University of Canterbury Library

The Canterbury earthquakes, which started with the 7.1 magnitude event on September 4, 2010, caused significant damage in the region. The September 4 earthquakes brought substantial damage to land, buildings, and infrastructure, while the 6.3 magnitude earthquake on February 22, 2011 (and its subsequent aftershocks), brought even greater property damage, but also significant loss of life in addition to the region. Thousands were injured, and 185 persons died. A national State of Emergency was declared and remained in effect until April 30, 2011. A significant number of people required immediate assistance and support to deal with loss, injury, trauma experiences, and property damages. Many had to find alternate accommodation as their houses were too damaged to stay in. Of those affected, many were already vulnerable, and others had been too traumatized by the events to effectively deal with the challenges they were faced with. A number of human service organizations in the region, from both government and non-government sectors, joined forces to be able to more effectively and efficiently help those in need. This was the start of what would become known as the Earthquake Support Coordination Service. The aim of this report is to present an evaluation of the Earthquake Support Coordination Service and its collaborative organization, based on documentation and interviews with key stakeholders of the service. The aim is also to evaluate the service based on perspectives gathered among the clients as well as the coordinators working in the service. The final aim is to offer a reflection on the service model, and on what factors enabled the service, as well as recommendations regarding aspects of the service which may require review, and aspects which may be useful in other contexts.

Images, UC QuakeStudies

USAR codes and a yellow sticker can be seen on the doors of a damaged building. The yellow sticker was part of a building assessment system used following the February earthquake and indicates that this building has limited access and needs further evaluation.

Images, UC QuakeStudies

Damage to the north side of the cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. Weeds can be seen growing around the war memorial in Cathedral Square.

Images, UC QuakeStudies

A photograph of building rubble on a demolition site between St Asaph Street and Tuam Street. The old Post Office building can be seen in the distance to the left and on the right are badly-damaged High Street buildings.

Images, UC QuakeStudies

A view down High Street, looking north-west through the cordon fence near the Tuam Street intersection. On the left a line of shipping containers support the facade of a damaged building. Rubble from demolished buildings can be seen in the distance.

Images, UC QuakeStudies

A view down High Street, looking north-west through the cordon fence near the Tuam Street intersection. On the left a line of shipping containers support the facade of a damaged building. Rubble from demolished buildings can be seen in the distance.

Images, UC QuakeStudies

A photograph of damaged buildings and empty site on the corner of Lichfield Street and Madras Street. A mural commissioned by Gap Filler titled 'Knit Happens' has been painted on the brick wall in the corner of the remaining buildings.

Images, UC QuakeStudies

A photograph of a cleared building site on High Street. Three shipping containers are stacked against the remaining facade of the Excelsior Hotel building on the left. The badly-damaged McKenzie & Lewis building on Tuam Street can be seen in the distance.

Images, UC QuakeStudies

A photograph of damaged buildings near the corner of Lichfield Street and Madras Street. A mural commissioned by Gap Filler titled 'Knit Happens' has been painted on the brick wall in the corner of the remaining buildings.

Research papers, University of Canterbury Library

The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.