Search

found 833 results

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_034.JPG From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_025.JPG From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_022.JPG From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_023.JPG From the collection of Christchurch City Libraries.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers. The top section of the building has crumbled, the masonry spilling onto the footpath. Wire fencing has been placed around the building as a cordon.

Research papers, Victoria University of Wellington

©2019. American Geophysical Union. All Rights Reserved. Earthquakes have been inferred to induce hydrological changes in aquifers on the basis of either changes to well water-levels or tidal behavior, but the relationship between these changes remains unclear. Here, changes in tidal behavior and water-levels are quantified using a hydrological network monitoring gravel aquifers in Canterbury, New Zealand, in response to nine earthquakes (of magnitudes M w 5.4 to 7.8) that occurred between 2008 and 2015. Of the 161 wells analyzed, only 35 contain water-level fluctuations associated with “Earth + Ocean” (7) or “Ocean” (28) tides. Permeability reduction manifest as changes in tidal behavior and increased water-levels in the near field of the Canterbury earthquake sequence of 2010–2011 support the hypothesis of shear-induced consolidation. However, tidal behavior and water-level changes rarely occurred simultaneously (~2%). Water-level changes that occurred with no change in tidal behavior reequilibrated at a new postseismic level more quickly (on timescales of ~50 min) than when a change in tidal behavior occurred (~240 min to 10 days). Water-level changes were more than likely to occur above a peak dynamic stress of ~50 kPa and were more than likely to not occur below ~10 kPa. The minimum peak dynamic stress required for a tidal behavior change to occur was ~0.2 to 100 kPa.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers on Durham Street. One of the entrance ways has crumbled, and the rubble has fallen in front. An inner door can be seen, now leading to nowhere.

Images, UC QuakeStudies

A photograph of members of Civil Defence and other organisations helping with the emergency response to the Canterbury earthquakes. They are standing on the corner of Montreal and Gloucester Streets outside the Christchurch Art Gallery. The Art Gallery served as the headquarters for the Civil Defence after the 22 February 2011 earthquake.