Search

found 5862 results

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team pointing to an earthquake-damaged house in central Christchurch. A large section of the house has collapsed, the rubble spilling onto the driveway. Emergency tape has been draped across the driveway as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cathedral of the Blessed Sacrament on Barbadoes Street. The tower on the right has crumbled, and the masonry has fallen to the pavement below. A car has been crushed by the fallen rubble. Windows in the tower behind are broken.

Images, UC QuakeStudies

A photograph of emergency management personnel standing outside the Canterbury Trade Union Centre on Armagh Street. Emergency tape has been draped around the outside of the building and USAR codes have been spray-painted on a column near the entrance. Behind the building are several other earthquake-damaged buildings.

Images, UC QuakeStudies

A photograph of the earthquake-damage to the Quinn's clothing store on Papanui Road. The front wall of the building has crumbled, the bricks and other rubble falling onto the footpath and street below. The inside of the second storey can now clearly be seen from the street.

Images, UC QuakeStudies

A photograph of the earthquake damage to a building on the corner of Armagh and Barbadoes Streets. The outer walls of the building have collapsed and the bricks have spilled onto the footpath and road below. Steel and wire fences have been placed around the building as a cordon.

Research papers, The University of Auckland Library

A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.

Research papers, The University of Auckland Library

The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.

Images, UC QuakeStudies

A photograph of the earthquake damage to a shop on Colombo Street. Part of the closest brick wall of the building has collapsed and the bricks have spilled onto the ground in front of the building. "No go" has been spray-painted on the footpath in the foreground of the photograph.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Bealey Avenue near Springfield Road. The walls have crumbled, the bricks spilling onto the footpath in front. the ceiling of the building has been braced with scaffolding. Wire fencing and police tape has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of earthquake repairs underway in the quad of Christ's College on Rolleston Avenue. A sign on the gate read, "Quake repairs, keep out". Tape reading, "Danger keep out" has been draped across both gates . In the background is a crane, several workers in high-visibility clothing, and building supplies.

Images, UC QuakeStudies

A photograph of the intersection of High, Lichfield, and Manchester Streets, taken from the corner of High and Lichfield Streets. Emergency management personnel are sitting and standing in front of wire fences which are blocking off the intersection. In the background several excavators are clearing rubble from earthquake-damaged buildings.

Images, UC QuakeStudies

A view down Maling Street in Avonside showing a pile of discarded building rubble from one of the houses. Beside the footpath the blue lids of septic tanks can be seen. These tanks were installed in front of Avonside properties to allow residents to use their toilets after the September earthquake.

Images, UC QuakeStudies

A view down Maling Street in Avonside showing a pile of discarded building rubble from one of the houses. Beside the footpath the blue lids of septic tanks can be seen. These tanks were installed in front of Avonside properties to allow residents to use their toilets after the September earthquake.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Registry Building on the corner of Montreal and Worcester Streets. Masonry around the gable has collapsed onto the footpath below. Steel bracing has been used to hold up the remaining masonry. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of volunteers from the Wellington Emergency Management Office working at the reception in Cowles Stadium on Pages Road. The stadium was set up by Civil Defence as temporary accommodation for citizens displaced by the 4 September 2010 earthquake. One of the volunteers is holding a cat in a carrier.

Images, UC QuakeStudies

A photograph of a map used by emergency management personnel to inspect buildings after the 22 February 2011 earthquake. The map is of the streets to the north-west of Cathedral Square. An area encompassing parts of St Asaph, Madras, Tuam, High, and Lichfield Streets have been outlined with biro.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Country Theme store on the corner of Manchester and St Asaph Streets. The brick façade has crumbled in various places, the bricks spilling onto the footpath below. A red sticker on the door indicates that the building is no longer safe to enter.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office Emergency Response Team and the Red Cross working on High and Manchester Streets. On both sides of the street there are piles of rubble from the earthquake-damaged buildings. Several excavators have been parked in a line along the street.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Registry Building on the corner of Montreal and Worcester Streets. Masonry around the gable has collapsed onto the footpath below. Steel bracing has been used to hold up the remaining masonry. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to a block of shops on Manchester Street including While you Wait Studios, Aji Global Grocery & Chocolateria, and Peaches and Cream. Sections of the wall above crumbled, the bricks falling to the footpath and destroying the awnings. The rubble has been cleared from the footpath.

Images, UC QuakeStudies

A photograph of the earthquake damage to the former Canterbury Public Library on the corner of Hereford Street and Cambridge Terrace. The bricks in the corner of the building have crumbled and masonry can be seen on the footpath below. Wire fences have been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of a member of the New Zealand Army talking to a police officer on the corner of Colombo and Wordsworth Street. In the background there is a block of earthquake-damaged shops. Sections of the shops' walls have collapsed and the rubble has spilled onto the road and footpath.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office lining up outside a Maggi van which is distributing out soup. The van is parked outside Cowles Stadium on Pages Road, which was set up by Civil Defence as temporary accommodation for those displaced by the 4 September 2010 earthquake.

Images, UC QuakeStudies

A photograph of volunteers from the Wellington Emergency Management Office working at the reception area of Cowles Stadium on Pages Road. The stadium was set up as temporary accommodation for those displaced by the 4 September 2010 earthquake. To the right Tim Shadbolt, Mayor of Invercargill, is talking on a telephone.

Images, UC QuakeStudies

A photograph of the earthquake damage to a group of shops on the corner of Woodham Road and Gloucester Street. The top of the facade has crumbled and bricks have fallen onto the footpath, taking the awnings with them. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to a brick wall of a building on Acton Street. Large sections of the wall have fallen away. The remaining section has large cracks between the bricks. A boat which was being stored inside has toppled over and is now sticking out of the building.

Images, UC QuakeStudies

A photograph of the earthquake damage to Charlie B's Backpackers on Madras Street. The front of the building has collapsed, the bricks and other rubble spilling onto the road and footpath in front. Many of the walls inside the top storey of the building are now hanging loose from the ceiling.

Images, UC QuakeStudies

A photograph of three petrol pumps at a BP station. One of the pumps has been covered by a piece of paper with a sticker reading, "out". Underneath the sticker, the paper reads, "Available - diesel only. Due to high demand (following the Canterbury Earthquake) we are currently out of petrol".

Images, UC QuakeStudies

A photograph of the earthquake-damaged Cathedral of the Blessed Sacrament on Barbadoes Street. Rubble from the collapsed tower is lying on the ground in front. A car has been crushed under this rubble. Wire fencing, shipping containers, and road cones have been placed around the building as a cordon.