Search

found 134023 results

Images, UC QuakeStudies

A photograph of the north-west corner of the ChristChurch Cathedral in Cathedral Square. The tower to the right has been partially demolished with only the lower section remaining. The door to the tower can be seen through the broken walls.

Images, UC QuakeStudies

A photograph of the rubble of the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake. A digger was used to clear the rubble away from the building.

Images, UC QuakeStudies

Damage to the Community of the Sacred Name building on Barbadoes Street. The gable ends of the building have collapsed, and bricks have fallen to the footpath below. The building is surrounded by security fencing. The photographer comments, "A bike ride around the CBD. Nunnery, Barbadoes St".

Images, UC QuakeStudies

For the first time in November 2011, Christchurch residents finally had the opportunity to see the earthquake-damaged city centre on the Red Zone bus tours organised by CERA. The podium which formerly held the Godley statue. Behind is the Regent Theatre dome which has been removed from the building.

Images, UC QuakeStudies

A close-up photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

Damage to the Community of the Sacred Name building on Barbadoes Street. The gable ends of the building have collapsed, and bricks have fallen to the footpath below. The building is surrounded by security fencing. The photographer comments, "A bike ride around the CBD. Nunnery, Barbadoes St".

Images, UC QuakeStudies

Damage to the north-west corner of the Cathedral of the Blessed Sacrament. The upper part of the corner structure has collapsed. A statue of the Virgin Mary can be seen in a window. The photographer comments, "A bike ride around the CBD. Catholic Cathedral, Barbadoes St".

Research papers, Lincoln University

Recovery from disasters is a significant issue faced by all countries in the world at various times. Governments, including central and local governments, are the key actors regarding post-disaster recovery because they have the authority and responsibility to rescue affected people and recover affected areas (Yang, 2010). Planning is a critical step in the recovery process and provides the basis for defining a shared vision for recovery, clear objectives and intended results. Subsequently, the concept of collaborative planning and ‘build back better’ are highly desirable in recovery planning. However, in practice, these concepts are difficult to achieve. A brief description of the recovery planning in Christchurch City following the Canterbury earthquakes 2011 is provided as an example and comparison. This research aims to analyse the planning process to develop a post-disaster recovery plan in Indonesia using Mataram City’s recovery plan following the Lombok Earthquakes 2018 as the case study. It will emphasise on the roles of the central and local governments and whether they collaborate or not, and the implications of decentralisation for recovery planning. The methodology comprised a combination of legislation analysis and semi-structure interviews with the representatives of the central and local governments who were involved in the planning process. The results indicate that there was no collaboration between the central and local governments when developing the recovery plan, with the former tend to dominate and control the planning process. It is because there are regulatory and institutional problems concerning disaster management in Indonesia. In order to improve the implementation of disaster management and develop a better recovery plan, some recommendations are proposed. These include amendments the disaster management law and regulations to provide a clear guideline regarding the roles and responsibilities of both the central and local governments. It is also imperative to improve the capacity and capability of the local governments in managing disaster.

Images, UC QuakeStudies

A photograph of Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, sitting among the damaged parts of the Townsend Telescope. The telescope was damaged during the 22 February 2011 earthquake, when the Observatory tower at the Christchurch Arts Centre collapsed. Kershaw has been given the task of restoring the telescope. In this photograph he is holding the telescope's clock drive. In the foreground there is a plaque reading, "The equatorial telescope and accessories in this observatory were presented to Canterbury College by James Townsend Esq. 1891. A large contribution towards the erection of the tower was made by the Canterbury Astronomical Society".

Images, UC QuakeStudies

A photograph of Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, sitting among the damaged parts of the Townsend Telescope. The telescope was damaged during the 22 February 2011 earthquake, when the Observatory tower at the Christchurch Arts Centre collapsed. Kershaw has been given the task of restoring the telescope. In this photograph he is holding the telescope's clock drive. In the foreground there is a plaque reading, "The equatorial telescope and accessories in this observatory were presented to Canterbury College by James Townsend Esq. 1891. A large contribution towards the erection of the tower was made by the Canterbury Astronomical Society".

Videos, UC QuakeStudies

A video of an interview with New Zealand Fire Service Chief Executive and National Commander Paul Baxter, about the findings of the coronial inquest into the CTV building deaths. Coroner Gordon Matenga found that failures by the Fire Service and Urban Search and Rescue did not contribute to the deaths of eight students at the CTV site in the aftermath of the 22 February 2011 earthquake. Baxter talks about the importance of acknowledging the families of the deceased, and the changes and improvements that have been made by the New Zealand Fire Service since the collapse of the CTV building.

Research papers, University of Canterbury Library

Field surveys and experimental studies have shown that light steel or timber framed plasterboard partition walls are particularly vulnerable to earthquake damage prompting the overarching objective of this research, which is to further the development of low damage seismic systems for non-structural partition walls in order to facilitate their adoption by industry to assist with reducing the losses associated with the maintenance and repair cost of buildings across their design life. In particular, this study focused on the behaviour of steel-framed partition walls systems with novel detailing that aim to be “low-damage” designed according to common practice for walls used in commercial and institutional buildings in New Zealand. This objective was investigated by (1) investigating the performance of a flexible track system proposed by researchers and industry by experimental testing of full-scale specimens; (2) investigating the performance of the seismic gap partition wall systems proposed in a number of studies, further developed in this study with input from industry, by experimental testing of full-scale specimens; and (3) investigating the potential implications of using these systems compared with traditionally detailed partition wall systems within multi-storey buildings using the Performance Based Earthquake Engineering loss assessment methodology. Three full-scale testing frames were designed in order to replicate, under controlled laboratory conditions, the effects of seismic shaking on partition walls within multi-storey buildings by the application of quasi-static uni-directional cyclic loading imposing an inter-storey drift. The typical configuration for test specimens was selected to be a unique “y-shape”, including one angled return wall, with typical dimensions of approximately 2400 mm along the main wall and 600 mm along (approximately) the returns walls with a height of 2405 mm from floor to ceiling. The specimens were aligned within test frames at an oblique angle to the direction of loading in order to investigate bi- directional effects. Three wall specimens with flexible track detailing, two identical plane specimens and the third including a doorway, were tested. The detailing involved removing top track anchors within the proximity of wall intersections, thus allowing the tracks to ‘bow’ out at these locations. Although the top track anchors were specified to be removed the proximity of wall intersections, a construction error was made whereby a single top track slab to concrete anchor was left in at the three-way wall junction. Despite this error, the experimental testing was deemed worthwhile since such errors will also occur in practice and because the behaviour of the wall can be examined with this fixing in mind. The specimens also included an acoustic/fire sealant at the top lining to floor boundary. In addition to providing drift capacities, the force-displacement behaviour is also reported, the dissipated energy was computed, and the parameters of the Wayne-Stewart hysteretic model were fitted to the results. The specimen with the door opening behaved significantly different to the plane specimens: damage to the doorway specimen began as cracking of the wallboard propagating from the corners of the doorway following which the L- and Y- shaped junctions behaved independently, whereas damage to the plane specimens began as cracking of the wallboard at the top of the L-junction and wall system deformed as a single unit. The results suggest that bi-directional behaviour is important even if its impact cannot be directly quantified by the experiments conducted. Damage to sealant implies that the bond between plasterboard and sealant is important for its seismic performance. Careful quality control is advised as defects in the bond may significantly impact its ability to withstand seismic movement. Two specimens with seismic gap detailing were tested: a steel stud specimen and a timber stud specimen. Observed drift capacities were significantly greater than traditional plasterboard partition systems. Equations were used to predict the drift at which damage state 1 (DS1) and damage state 2 (DS2) would initiate. The equation used to estimate the drift at the onset of DS1 accurately predicted the onset of plaster cracking but overestimated the drift at which the gap filling material was damaged. The equation used to predict the onset of DS2 provided a lower bound for both specimens and also when used to predict results of previous experimental tests on seismic gap systems. The gap-filling material reduced the drift at the onset of DS1, however, it had a beneficial effect on the re-centring behaviour of the linings. Out-of-plane displacements and return wall configuration did not appear to significantly impact the onset of plaster cracking in the specimens. A loss assessment according to the PBEE methodology was conducted on four steel MRF case study buildings: (1) a 4-storey building designed for the Christchurch region, (2) a 4-storey building designed for the Wellington region, (3) a 12-storey building designed for the Christchurch region, and (4) a 12- storey building designed for the Wellington region. The fragility parameters for a traditional partition system, the flexible track partition system, and the seismic gap steel stud and timber stud partition systems were included within the loss assessment. The order (lowest to highest) of each system in terms of the expected annual losses of each building when incorporating the system was, (1) the seismic gap timber stud system, (2) the seismic gap steel stud system, (3) the traditional/baseline system, and (4) the flexible track system. For the seismic gap timber stud system, which incurred the greatest reduction in expected annual losses for each case study building, the reduction in expected annual losses in comparison to the losses found when using the traditional system ranged from a 5% to a 30% reduction. This reinforces the fact that while there is a benefit to the using low damage partition systems in each building the extent of reduction in expected annual losses is significantly dependent on the particular building design and its location. The flexible track specimens had larger repair costs at small hazard levels compared to the traditional system but smaller repair costs at larger hazard levels. However, the resulting expected annual losses for the flexible track system was higher than the traditional system which reinforces findings from past studies which observed that the greatest contribution to expected annual losses arises from low to moderate intensity shaking seismic events (low hazard levels).

Videos, UC QuakeStudies

A video of a panel discussion at the 2016 Seismics in the City Conference. The panel is titled, "Engaging: Generating Community Input and Feedback".Leanne Curtis of Breakthrough Services, Evan Smith, Programme Manager of Eastern Vision, and André Lovatt, CEO of the Arts Centre, present case studies.The theme of the panel reads, "'Regenerate Christchurch must and will engage with the community around what will be done' (André Lovatt, Chair, Regenerate Christchurch). Learning from the past by tapping the wisdom of communities and applying the lessons to the future as we shape the new city."

Videos, UC QuakeStudies

A video of a panel discussion at the 2016 Seismics in the City Conference. The panel is titled, "Engaging: Generating Community Input and Feedback".Leanne Curtis of Breakthrough Services, Evan Smith, Programme Manager of Eastern Vision, and André Lovatt, CEO of the Arts Centre, respond to questions from the floor. Brendon Burns, of Brendon Burns and Associates, facilitates the discussion.The theme of the panel reads, "'Regenerate Christchurch must and will engage with the community around what will be done' (André Lovatt, Chair, Regenerate Christchurch). Learning from the past by tapping the wisdom of communities and applying the lessons to the future as we shape the new city."

Videos, UC QuakeStudies

A video of Emily Marriot, from Corbel Construction, and Agata Bulksa, from Kirk Roberts Engineers, taking part in a boxing match as part of the Battle of the Rebuild fight night. The Battle of the Rebuild bought together major construction and engineering companies involved in the rebuild of Christchurch. The event raised more than $169,000 for the Aranui and Linwood College Breakfast Club, the Champion Centre, and the Canterbury Youth Development Programme Trust.

Images, UC QuakeStudies

A photograph of the Townsend Telescope in the Observatory at the Christchurch Arts Centre. In the bottom right-hand corner of the photograph is a pulley for the telescope's clock drive. This is one of the pieces that went missing when the Observatory tower collapsed in the 22 February 2011 earthquake. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A digitally manipulated photograph of the bottom of Victoria Lake in Hagley Park. The photographer comments, "After the Christchurch earthquake in February 2011, Victoria Lake suffered some cracking which broke the previous clay seal. The lake has now been excavated so that the new clay seal can be spread out and flattened ready to be filled again with water. The red pile is the clay and in the background is the grey silt or liquefaction that spewed into the lake from cracks in the lake bed".

Images, UC QuakeStudies

A laminated sign for the 2011 Festival of Flowers attached to a wooden planter. The plants in the planter are dry and dead. The photographer comments, "The theme for the 2011 Festival of Flowers was 'burst! of water'. The Christchurch February earthquake came and water and sand called liquefaction burst out of the ground all around the area. Ironically the plants for the festival were left unattended in the cordoned off red zone and they would have loved a little burst of water".

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The east and north walls and part of the upper floor have collapsed, tipping rubble and the contents of the rooms out onto the street. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants".

Research papers, University of Canterbury Library

One of the less understood geotechnical responses to the cyclic loading from the MW6.2 Christchurch Earthquake, on the 22nd of February 2011, is the fissuring in the loessial soil-mantled, footslope positions of the north-facing valleys of the Port Hills. The fissures are characterized by mostly horizontal offset (≤500mm), with minor vertical displacement (≤300mm), and they extend along both sides of valleys for several hundred metres in an approximately contour-parallel orientation. The fissure traces correspond to extensional features mapped in other studies. Previous studies have suggested that the fissures are the headscarps of incipient landslides, but the surface and subsurface features are not typical of landslide movement. Whilst there are some features that correlate with landslide movement, there are many features that contradict the landslide movement hypothesis. Of critical importance to this investigation was the fact that there are no landslide flanks, there has been no basal shear surface found, there is little deformation in the so-called ‘landslide body’, and there have been no recorded zones of low shear strength in the soil deposit that are indicative of a basal shear surface. This thesis is a detailed geotechnical study on the fissures along part of Ramahana Road in the Hillsborough Valley, Christchurch. Shallow and deep investigation methods found that the predominant soil is loess-colluvium, to depths of ~20m, and this soil has variable geotechnical characteristics depending on the layer sampled. The factor that has the most influence on shear strength was found to be the moisture content. Direct shear-box testing of disturbed, recompacted loess-colluvium found that the soil had a cohesion of 35-65kPa and a friction angle of 38-43° when the soil moisture content was at 8-10%. However when the moisture content was at 19-20% the soil’s cohesion decreased to 3-5kPa and its friction angle decreased to 33-38°, this moisture content is at or slightly above the plastic limit. An electrical resistivity geophysical survey was conducted perpendicular to multiple fissure traces and through the compressional zone at 17 Ramahana Road. The electrical resistivity line found that there was an area of high resistivity at the toe of the slope, and an area of high conductivity downslope of this and at greater depths. This area correlated to the compressional zone recorded by previous studies. Moisture content testing of the soil in these locations showed that the soil in the resistive area was relatively dry (9%) compared to the surrounding soil (13%), whilst the soil in the conductive area was relatively wet (22%)compared to the surrounding soil (19%). Density tests of the soil in the compressional zone recorded that the resistive area had a higher dry density than the surrounding soil (~1790 kg/m3 compared to ~1650 kg/m3). New springs arose downslope of the compressional zone contemporaneously with the fissures, and it is interpreted that these have arisen from increased hydraulic head in the Banks Peninsula bedrock aquifer system, and earthquake induced-bedrock fracturing. A test pit was dug across an infilled fissure trace at 17 Ramahana Road to a depth of 3m. The fissure trace had an aperture of 450-470mm at the ground surface, but it gradually lost aperture with depth until 2.0-2.1m where it became a segmented fissure trace with 1-2mm aperture. A mixed-colluvium layer was intercepted by the fissure trace at 2.4m depth, and there was no observable vertical offset of this layer. The fissure trace was at an angle of 78° at the ground surface, but it also flattened with depth, which gave it a slightly curved appearance. The fissure trace was at an assumed angle of 40-50° near the base of the test pit. Rotational slide, translational slide and lateral spread landslide movement types were compared and contrasted as possibilities for landslide movement types, whilst an alternative hypothesis was offered that the fissures are tensile failures with a quasi-toppling motion involving a cohesive block of loessial soil moving outwards from the slope, with an accommodating compressional strain in the lower less cohesive soil. The mechanisms behind this movement are suggested to be the horizontal earthquake inertia forces from the Christchurch Earthquake, the static shear stress of the slope, and bedrock uplift of the Port Hills in relation to the subsidence of the Christchurch city flatlands. Extremely high PGA is considered to be a prerequisite to the fissure trace development, and these can only be induced in the Hillsborough Valley from a Port Hills Fault rupture, which has a recurrence interval of ~10,000 years. The current understanding of how the loess-colluvium soil would behave under cyclic loading is limited, and the mechanisms behind the suggested movement type are not completely understood. Further research is needed to confirm the proposed mechanism of the fissure traces. Laboratory tests such as the cyclic triaxial and cyclic shear test would be beneficial in future research to quantitatively test how the soil behaves under cyclic loading at various moisture contents and clay contents, and centrifuge experiments would be of great use to qualitatively test the suggested mode of movement in the loessial soil.

Research papers, University of Canterbury Library

Liquefaction of sandy soil has been observed to cause significant damage to infrastructure during major earthquakes. Historical cases of liquefaction have typically occurred in sands containing some portion of fines particles, which are defined as 75μm or smaller in diameter. The effects of fines on the undrained behaviour of sand are not however fully understood, and this study therefore attempts to quantify these effects through the undrained testing of sand mixed with non-plastic fines sourced from Christchurch, New Zealand. The experimental program carried out during this study consisted of undrained monotonic and cyclic triaxial tests performed on three different mixtures of sand and fines: the Fitzgerald Bridge mixture (FBM), and two Pinnacles Sand mixtures (PSM1 and PSM2). The fines content of each host sand was systematically varied up to a maximum of 30%, with all test specimens being reconstituted using moist tamping deposition. The undrained test results from the FBM soils were interpreted using a range of different measures of initial state. When using void ratio and relative density, the addition of fines to the FBM sand caused more contractive behaviour for both monotonic and cyclic loadings. This resulted in lower strengths at the steady state of deformation, and lower liquefaction resistances. When the intergranular void ratio was used for the interpretation, the effect of additional fines was to cause less contractive response in the sand. The state parameter and state index were also used to interpret the undrained cyclic test results – these measures suggested that additional fines caused less contractive sand behaviour, the opposite to that observed when using the void ratio. This highlighted the dependency on the parameter chosen as a basis for the response comparison when determining the effects of fines, and pointed out a need to identify a measure that normalizes such effects. Based on the FBM undrained test results and interpretations, the equivalent granular void ratio, e*, was identified from the literature as a measure of initial state that normalizes the effects of fines on the undrained behaviour of sand up to a fines content of 30%. This is done through a parameter within the e* definition termed the fines influence factor, b, which quantifies the effects of fines from a value of zero (no effect) to one (same effect as sand particles). The value of b was also determined to be different when interpreting the steady state lines (bSSL) and cyclic resistance curves (bCR) respectively for a given mixture of sand and fines. The steady state lines and cyclic resistance curves of the FBM soils and a number of other sand-fines mixtures sourced from the literature were subsequently interpreted using the equivalent granular void ratio concept, with bSSL and bCR values being back-calculated from the respective test data sets. Based on these interpretations, it was concluded that e* was conceptually a useful parameter for characterizing and quantifying the effects of fines on the undrained behaviour of sand, assuming the fines influence factor value could be derived. To allow prediction of the fines influence factor values, bSSL and bCR were correlated with material and depositional properties of the presented sand-fines mixtures. It was found that as the size of the fines particles relative to the sand particles became smaller, the values of bSSL and bCR reduced, indicating lower effect of fines. The same trend was also observed as the angularity of the sand particles increased. The depositional method was found to influence the value of bCR, due to the sensitivity of cyclic loading to initial soil fabric. This led to bSSL being used as a reference for the effect of fines, with specimens prepared by moist tamping having bCR > bSSL, and specimens prepared by slurry deposition having bCR < bSSL. Finally the correlations of the fines influence factor values with material and depositional properties were used to define the simplified estimation method – a procedure capable of predicting the approximate steady state lines and cyclic resistance curves of a sand as the non-plastic fines content is increased up to 30%. The method was critically reviewed based on the undrained test results of the PSM1 and PSM2 soils. This review suggested the method could accurately predict undrained response curves as the fines content was raised, based on the PSM1 test results. It also however identified some key issues with the method, such as the inability to accurately predict the responses of highly non-uniform soils, a lack of consideration for the entire particle size distribution of a soil, and the fact the errors in the prediction of bSSL carry through into the prediction of bCR. Lastly some areas of further investigation relating to the method were highlighted, including the need to verify the method through testing of sandy soils sourced from outside the Christchurch area, and the need to correlate the value of bCR with additional soil fabrics / depositional methods.

Articles, UC QuakeStudies

A copy of a letter from Hugo Kristinsson which was sent to Prince William, the Duke of Cambridge, on 2 March 2014 . The letter was sent on behalf of Empowered Christchurch, as a response to the letter read by the Prince at the official Civic Memorial Service on the 22 February 2014. Kristinsson thanks the Prince for his letter and updates him on the progress of the rebuild. He expresses his respect for King George VI and Queen Elizabeth for their compassion in the early 1940s to the victims of bombing raids during the war and acknowledge's Prince William and Prince Harry's philanthropy through The Royal Foundation of the Duke and Duchess of Cambridge and Prince Harry and The Princes' Charities Forum. Lastly he implores the Prince and the Duchess of Cambridge to visit residents from the 'low-lying seaside side of the city' who 'feel that their plight has been trivialised by the authorities in favour of prestigious big-budget projects'.

Audio, UC QuakeStudies

Part two of the audio that makes up Gap Filler's 29th project, the Transitional City Audio Tour. This part of the tour begins in Cathedral Square and includes commentary on the proposal for the Convention Centre. The tour then moves down Worcester Street, providing commentary on Hotel 115, the Old Government Building (now the Heritage Hotel), and the Trinity Church on the way. Once the tour reaches Latimer Square, it moves towards Hereford Street and there is commentary on the Green Frame, and the future of Les Mill and Calendar Girls. The tour then moves down Madras Street, passing the Transitional Cathedral and the artwork, 185 Empty Chairs. The tour ends with commentary on the Farmers' Trading Building, the first Farmers' building in Christchurch which was eventually replaced by the IRD Building on Madras Street.

Research papers, University of Canterbury Library

Oblique convergence of the Pacific and Australian Plates is accommodated in the northern South Island by the Marlborough Fault System. The Hope Fault is the southern of four major dextral strike-slip faults of this system. Hanmer Basin is a probable segment boundary between the Hope River and Conway segments of the Hope Fault. The Conway segment is transpressional and shows increasing structural complexity near the segment boundary at Hanmer Basin, with multiple Late Quaternary traces, and fault-parallel folding in response to across-fault shortening. Between Hossack Station and Hanmer Basin a crush zone in excess of one kilometre wide is exposed in incised streams and rivers. The crush zone has an asymmetrical geometry about the active trace of the Hope Fault, being only 100-300 metres wide south of the fault, and more than 500 metres wide north of the fault. The most intense deformation of Torlesse bedrock occurs at the south side of the fault zone, indicating that strain is accommodated against the fault footwall. North of the fault deformation is less intense, but occurs over a wider area. The wide fault zone at Hossack Station may reflect divergence of the Hanmer Fault, a major splay of the Hope Fault. At Hossack Station, the Hope Fault has accommodated at least 260 metres of dextral displacement during the Holocene. Dating of abandoned stream channels, offset by the Hope Fault, indicated a Late Holocene dextral slip-rate of 18±8 mm-¹ for the west end of the Conway segment. Using empirical formulae and inferred fault parameters, the expected magnitude of an earthquake generated by the Conway segment is M6.9 to M7.4; for an exceedence probability of 10%, the magnitude is M7.7 to M7.9. Effects associated with coseismic rupture of the Conway segment include shaking of up to MMIX along the ruptured fault and at Hanmer Basin. Uplift at the east end of Hanmer Basin, in conjunction with subsidence at the southwest margin of the basin, is resulting in the development of onlapping stratigraphy. Seismic reflection profiles support this theory. Possible along-fault migration of the basin is inferred to be a consequence of non-parallelism of the master faults.