Search

found 5904 results

Images, UC QuakeStudies

A photograph of the earthquake damage to a building on Armagh Street. The walls of the building have crumbled and the bricks have spilt onto the footpath, exposing the wooden structure beneath. Police tape and road cones have been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.

Images, UC QuakeStudies

A photograph looking across High and Tuam Street to the earthquake-damaged Domo furniture store on Tuam Street. Wire fences have been used to cordon off High Street and the garden between the streets. Several road cones and other supplies have been stacked on High Street.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office Emergency Response Team and the Red Cross, standing on the corner of Lichfield and Manchester Street. In the background an excavator is parked on the road. Behind the excavator is a block of earthquake-damaged buildings.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team walking down Manchester Street. In the background is a group of earthquake-damaged shops. The outer walls of the top storeys of the shops have collapsed, the bricks spilling onto the street.

Images, UC QuakeStudies

A photograph of the earthquake damage to Woodham Road near the intersection with Carnarvon Street. The white line in the centre of the road now wavers due to the tar seal buckling. Road cones have been placed over cracks in the road to warn road users.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office walking down Lichfield Street towards the intersection of Madras Street. Buildings on either side of the street have been damaged by the earthquake. Plastic fences have been places around piles of rubble on the street as cordons.

Images, UC QuakeStudies

A photograph of the earthquake damage to the back of Wharetiki on Colombo Street. The chimney of the house has pulled away from the back wall and collapsed onto the roof below. A wooden structure built up against the house has also pulled away from the wall.

Images, UC QuakeStudies

A truck used to drain the septic tanks installed in front of Avonside properties to allow residents to use their toilets after the 4 September 2010 earthquake. The truck's operator has parked it beside the Avon River on Avonside Drive while he takes a break from working.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house in Christchurch. The front and side of the house has collapsed, the bricks and other rubble spilling onto the garden, exposing the rooms inside. Emergency tape has been draped across the front of the property as a cordon.

Articles, UC QuakeStudies

An article from the Media Studies Journal of Aotearoa New Zealand Volume 14, Number 1. The article is titled, "Against the Odds: community access radio broadcasting during the Canterbury earthquakes, some reflections on Plains FM 96.9". It was written by Brian Pauling and Nicki Reece.

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "The Heathcote Valley entrance to the Bridal Track to Lyttelton was closed for a year because of the danger of falling rocks. It opened on the morning of December 23. The earthquake at lunchtime then closed it again when more rocks fell".

Images, UC QuakeStudies

The window of a shop in Kaiapoi, with the gutted interior just visible behind the signs. A sign on the window reads "The Scallywags beat us! We have moved 158.26 meters (sic) to the corner of Fuller Street and Williams Street". Many businesses moved temporarily or permanently due to earthquake damage.

Images, UC QuakeStudies

The Williams Street Bridge in Kaiapoi. This part of the footpath was damaged when the concrete abutment rose during the earthquake, forcing its way through the pavement and into the open. Fencing has been placed around this section of the bridge until work can be done to make it safe to walk on.

Images, UC QuakeStudies

A photograph submitted by Raymond Morris to the QuakeStories website. The description reads, "Cathedral of the Blessed Sacrament, Barbadoes Street. The Cathedral was opened in 1905, the architect was Frank Petrie, and was designed in the Italian renaissance style as a basilica. It is not certain yet whether it will be reconstructed after the 2011 earthquakes.".

Images, UC QuakeStudies

A photograph submitted by Raymond Morris to the QuakeStories website. The description reads, "The Provincial Hotel, corner Barbadoes and Cashel streets is one the buildings now missing after the 2011 earthquakes, paintings of others can be found on the artist Raymond Morris’s flickr site (http://www.flickr.com/photos/rayso180/sets/72157626939956494/)".

Images, UC QuakeStudies

A photograph submitted by Raymond Morris to the QuakeStories website. The description reads, "The New Zealand Express Co. Ltd. building (Manchester Courts) built in 1906 on the corner of Manchester and Hereford Sts. In its time it was Christchurch’s tallest office building. This painting is from the Raymond Morris Collection of earthquake demolished buildings.".

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "The Heathcote Valley entrance to the Bridle Track to Lyttelton was closed for a year because of the danger of falling rocks. It opened on the morning of December 23. The earthquake at lunchtime then closed it again when more rocks fell".

Images, UC QuakeStudies

St Pauls Trinity-Pacific Presbyterian Church on the corner of Cashel and Madras Streets. Scaffolding has been placed around the left dome of the building which was damaged during the 4 September earthquake. Plastic has also been placed over the dome to protect the inside from weather damage.

Images, UC QuakeStudies

St Pauls Trinity-Pacific Presbyterian Church on the corner of Cashel and Madras Streets. Scaffolding has been placed around the left dome of the building which was damaged during the 4 September earthquake. Plastic has also been placed over the dome to protect the inside from weather damage.

Images, UC QuakeStudies

Members of the University of Canterbury's E-Learning team Susan Tull and Nick Ford in their temporary office in the James Hight building. The photographer comments, "Yet another change of workplace for our E-Learning group, as the University juggles people and buildings to carry out earthquake repairs. Susan and Nick settle in".

Images, eqnz.chch.2010

Cleaning up the silt and sand from Hoon Hay properties. Here Laura, Robbie, and Ronny are part of the clean-up crew on Wyn Street.

Research papers, The University of Auckland Library

A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.

Images, UC QuakeStudies

A photograph of the earthquake damage to the entrance of a driveway on Glenarm Terrace. A large hole in the foreground has had a road cone placed inside it. Other large cracks and liquefaction can bee seen. A man in overalls has parked his van next to the damage.