Members of the public speaking with police officers on the corner of Durham Street and Armagh Street in the aftermath of the 22 February earthquake. On the right the timber section of the historic Provincial Council Chambers can be seen, including the clock tower which has collapsed onto the road. Armagh Street leading into the city has been cordoned off by red tape.
A photograph submitted by Scott Thomas to the QuakeStories website. The description reads, "The two separate piles of dirt outside on the street from mine and the 5 other townhouses I share my driveway with. In the distance you can see rubble on the ground and if you look carefully you can make out the bumps where the energy released has warped the road. Taken 28 February 2011.".
A photograph of staff from the Department of Physics and Astronomy from the University of Canterbury recovering parts of the Townsend Telescope from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.
A photograph of staff from the Department of Physics and Astronomy from the University of Canterbury recovering parts of the Townsend Telescope from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.
Looking south west across Cathedral Square showing the eastern side of Christchurch Cathedral (left), the Godley statue (centre left) with the (from left to right) Chief Post Office, the Regent Theatre Building (directly behind the statue on the corner of Worcester Street), the AMP Building, the Government Life Building and the Grand Theatre.
A photograph of the earthquake damage to the John Burns & Co. Ltd building on Lichfield Street. The top section of the side wall has collapsed and the bricks have spilled onto the car park below, exposing the inside of the building. Several crushed cars have been removed from the car park and stacked on the street.
A photograph looking south out a window of the PricewaterhouseCoopers Building. Notable landmarks include: New Regent Street and the Rendezvous Hotel on the left side of the photograph; the Novotel in the centre; the Lyttelton Times building to the right; and the Hotel Grand Chancellor in the background.
A photograph of a yellow sticker on the window of the Diabetes Centre on Hagley Avenue. The sticker was placed on the building after the 4 September 2010 earthquake, indicating that access to the building was restricted. The engineer who surveyed the building describes the damage to the building as follows: "Panel damaged and displaced at rear - area cordoned off. Loose soffit linings. Damage to ceiling".
A photograph of the earthquake damage to the John Burns & Co. Ltd building on Lichfield Street. The top section of the side wall has collapsed and the bricks have spilled onto the car park below, exposing the inside of the building. Several crushed cars have been removed from the car park and stacked on the street.
A photograph of an earthquake-damaged building in Christchurch. The wall on the side of the house has crumbled, and the bricks have fallen onto the fence and damaged it. Wooden planks have been used to brace the wall towards the back of the property. A red sticker on the front window indicates that the house is unsafe to enter.
A photograph of the earthquake damage to the Asko Design building on Victoria Street. The top of the facade has crumbled and fallen into the street, taking the awning with it. The side wall has also collapsed, exposing the inside of the building. Wire fencing and tape have been used to cordon the buildings off.
A fence along the side of the Avon River near the Retour Restaurant has broken and is leaning towards the river. The photographer comments, "After the Christchurch earthquakes the land moved towards the river Avon and in a lot of places buildings and walls sagged down in the direction of the waterway".
One landscape colour digital photograph taken on 25 February 2011 showing damage to the Norton Buildings on Oxford Street. The photograph shows part of the first floor of the building and the façade collapsed onto the ground floor and out onto the street. The photograph was taken from St Davids Street looking west. Also visible in the photogra...
One landscape colour digital photograph taken on 27 April 2011 showing the site occupied by the Volcano Restaurant, the Lava Bar, Lyttelton Fisheries and Coastal Living Design Store on London Street. The demolition of the Harbourlight Theatre is visible to the left of the photograph. The photograph is taken from Canterbury Street. The small siz...
The Government has handed the report of the Royal Commission on the Canterbury Earthquakes to the police to look at whether further action could be taken over the construction of the CTV building.
The head of the the Canterbury Employers' Chamber of Commerce, Peter Townsend, says the effects of the Christchurch earthquake will dominate business in Canterbury for at least the next three years.
The building industry is celebrating the best in home construction with the House of the Year awards tomorrow night. Registered Master Builders chief executive David Kelly says the finalists include designs that have taken lessons from the Christchurch earthquakes.
Outside the cordon at the corner of Cambridge Terrace and Worcester Boulevard. On the cordon fence is a flower and the sign reads 'Extreme Danger, Keep Out". In the background on the right is the Clarendon Tower.
People enjoying the nice weather on the grass field next to New Brighton Beach. In the background is the New Brighton Pier, the Salt on the Pier restaurant and the New Brighton Public Library.
The public at the Memorial Service in Hagley Park to commemorate the one year anniversary of the 22nd February earthquake. The big screen showing the lighting of candles, part of the memorial activites.
The public at the Memorial Service in Hagley Park to commemorate the one year anniversary of the 22nd February earthquake. The public was invited to cast flowers into the river following the service.
The public at the Memorial Service in Hagley Park to commemorate the one year anniversary of the 22nd February earthquake. The public was invited to cast flowers into the river following the service.
Earthquake damage to the Cathedral of the Blessed Sacrament. Shipping containers support the front of the building to prevent further damage, and workers are suspended from a crane above the remains of the dome.
A car drives onto the damaged Dallington bridge. The bridge has visibly moved relative to the road, there is a large gap at the side of the bridge, and the railings are warped.
The dome of the Cathedral of the Blessed Sacrament, seen before the earthquakes.
Members of the public take photographs of the damage to the north side of the cathedral. Steel bracing supports the front wall of the cathedral.
People signing the petitions during the Rally for the Cathedral in Cranmer Square. The rally protested the proposed demolition of the ChristChurch Cathedral.
“Of all the beautiful places in New Zealand – Christchurch is one of the prettiest. As the metropolis of the Canterbury province, the city has been built in the old Elizabethan style, …
This thesis describes the management process of innovation through construction infrastructure projects. This research focuses on the innovation management process at the project level from four views. These are categorised into the separate yet related areas of: “innovation definition”, “Project time”, “project team motivation” and “Project temporary organisation”. A practical knowledge is developed for each of these research areas that enables project practitioners to make the best decision for the right type of innovation at the right phase of projects, through a capable project organisation. The research developed a holistic view on both innovation and the construction infrastructure project as two complex phenomena. An infrastructure project is a long-term capital investment, highly risky and an uncertain. Infrastructure projects can play a key role in innovation and performance improvement throughout the construction industry. The delivery of an infrastructure project is affected in most cases by critical issues of budget constraint, programme delays and safety Where the business climate is characterized by uncertainty, risk and a high level of technological change, construction infrastructure projects are unable to cope with the requirement to develop innovation. Innovation in infrastructure projects, as one of the key performance indicators (KPI) has been identified as a critical capability for performance improvement through the industry. However, in spite of the importance of infrastructure projects in improving innovation, there are a few research efforts that have developed a comprehensive view on the project context and its drivers and inhibitors for innovation in the construction industry. Two main reasons are given as the inhibitors through the process of comprehensive research on innovation management in construction. The first reason is the absence of an understanding of innovation itself. The second is a bias towards research at a firm and individual level, so a comprehensive assessment of project-related factors and their effects on innovation in infrastructure projects has not been undertaken. This study overcomes these issues by adopting as a case study approach of a successful infrastructure project. This research examines more than 500 construction innovations generated by a unique infrastructure alliance. SCIRT (Stronger Christchurch Infrastructure Rebuild Team) is a temporary alliancing organisation that was created to rebuild and recover the damaged infrastructure after the Christchurch 2011 earthquake. Researchers were given full access to the innovation project information and innovation systems under a contract with SCIRT Learning Legacy, provided the research with material which is critical for understanding innovations in large, complex alliancing infrastructure organisation. In this research, an innovation classification model was first constructed. Clear definitions have been developed for six types of construction innovation with a variety of level of novelties and benefits. The innovation classification model was applied on the SCIRT innovation database and the resultant trends and behaviours of different types of innovation are presented. The trends and behaviours through different types of SCIRT innovations developed a unique opportunity to research the projectrelated factors and their effect on the behaviour of different classified types of innovation throughout the project’s lifecycle. The result was the identification of specific characteristics of an infrastructure project that affect the innovation management process at the project level. These were categorised in four separate chapters. The first study presents the relationship between six classified types of innovation, the level of novelty and the benefit they come up with, by applying the innovation classification model on SCIRT innovation database. The second study focused on the innovation potential and limitations in different project lifecycle phases by using a logic relationship between the six classified types of innovation and the three classified phases of the SCIRT project. The third study result develops a holistic view of different elements of the SCIRT motivation system and results in a relationship between the maturity level of definition developed for innovation as one of the KPIs and a desire though the SCIRT innovation incentive system to motivate more important innovations throughout the project. The fourth study is about the role of the project’s temporary organisation that finally results in a multiple-view innovation model being developed for project organisation capability assessment in the construction industry. The result of this thesis provides practical and instrumental knowledge to be used by a project practitioner. Benefits of the current thesis could be categorized in four groups. The first group is the innovation classification model that provides a clear definition for six classified types of innovation with four levels of novelty and specifically defined outcomes and the relationship between the innovation types, novelty and benefit. The second is the ability that is provided for the project practitioner to make the best decision for the right type of innovation at the right phases of a project’s lifecycle. The third is an optimisation that is applied on the SCIRT innovation motivation system that enables the project practitioner to incentivize the right type of innovation with the right level of financial gain. This drives the project teams to develop a more important innovation instead of a simple problemsolving one. Finally, the last and probably more important benefit is the recommended multiple-view innovation model. This is a tool that could be used by a project practitioner in order to empower the project team to support innovation throughout the project.
A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.